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Abstract. The problem of heteroclinic chaos detecting is considered with the help of the Melnikov 

method. This paper presents the Melnikov method adaptation based on investigation of a nanosatellite 

attitude dynamics in the presence of internal dissipation properties. The need for this adaptation is 

determined by dynamical aspects of perturbing oscillations acting with damping amplitudes. In this case 

formal analytical exponential growth of perturbations values in reverse time takes place while the classical 

Melnikov integral does not converge.  

The adaptation of the Melnikov method allows investigating the heteroclinic chaos in mechanical 

systems with internal dissipation properties. As a prime example of this adaptation, the research presents 

the complete study of chaotic attitude dynamics of a nanosatellite with a slightly movable unit under action 

of its damped oscillations considered as perturbations. Moreover, the considered research of the 

nanosatellite attitude dynamics discovers a range of important tasks in the area of a rigid body dynamics 

under different perturbations with damping. 

1. Introduction 

The analysis of homo-/heteroclinic orbits splitting and deterministic chaos 

parametrical study is one of the most important research topics in the dynamical 

systems theory. This research was developed in a continuous stream of scientific 

publications from the classical research of Jules Henri Poincaré to the studies of 

numerous more recent authors [Poincaré, H. (1899); Melnikov, V.K. (1963), Arnold 

V.I. (1964); Guckenheimer, J (1983); Holmes, P.J., & Marsden, J.E. (1983); 

Holmes, P.J. (1990); Kozlov, V.V. (1980, 1983); Lichtenberg, A.J. and Lieberman, 

M.A. (1983); Tabor, M. (1989); Wiggins, S. (1988-2003)]. 

Among the classical approaches to analyze homo-/heteroclinic chaos, we must 

indicate the classical Melnikov method and its generalizations. The Melnikov 

formalism is originating from the work of Melnikov V.K. (1963), where the 

homoclinic manifolds intersections were analytically detected, and the work of 

V.I. Arnold (1964), where this analytical technique was generalized with the help of 

whiskered tori theory. The multi-dimensional version of this formalism was 

constructed and developed by Holmes P.J. and Marsden J.E.  (1983) and 

Wiggins S. (1988). The work of Kozlov V.V. (1980) investigated a nonintegrability 

of dynamical systems due to the effect of splitting homo/heteroclinic separatrices 

under action of perturbations; and the separatrices splitting in the rigid body 

dynamics was analyzed by Ziglin S.L. (1980).  
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Different aspects of chaotic nonlinear behavior of dynamical systems were 

observed in the framework of practical applications, including the tasks of space 

flight mechanics [Holmes, P.J. (1990); Beletskiĭ, V.V. (1995-1996); El-Gohary 

Awad (2005-2009); Boccaletti, S., Grebogi, C., Lai, Y. C., Mancini, H., & Maza, D. 

(2000); Aslanov, V.S. (2017); Chernousko, F. L., Akulenko, L. D., Leshchenko, 

D.D. (2017), etc.]. In practical tasks, dynamical chaos is usually considered as a 

negative aspect, which should be suppressed. One of the ways to suppress the chaotic 

behavior is the creation of dissipative forces and torques acting inside dynamical 

systems. Those can be generated by external dry and liquid friction, internal 

structural friction (in flexible mechanical systems), heat radiation, environment and 

medium with internal resistance, dissipative liquids flows, liquid-filled cavities, and 

other dynamical processes and elements [Akulenko, L. D., Kozachenko, T. A., & 

Leshchenko, D. D. (2019); Aslanov V.S. (2012-2021), Bao-Zeng, Y. (2011); 

Beletskiĭ, V.V., Pivovarov, M.L., & Starostin, E.L. (1996); Chen Li-Qun, Liu Yan-

Zhu (2002); Doroshin A.V. (2012-2021); Iñarrea, M. (2009); Iñarrea, M., and 

Lanchares, V. (2000); Iñarrea, M., Lanchares, V., Rothos, V. M., Salas, J. P. (2003); 

Kuang Jinlu, Tan Soonhie, Arichandran Kandiah, Leung A.Y.T. (2001); Kuang, 

J.L., Meehan, P.A., Leung, A.Y.T. (2006); Liu, Y., Chen, L. (2013); Peng, J., & Liu, 

Y. (2000); etc.]. 

All of the indicated above classical works described the chaotic dynamics 

appearance under the action of steady oscillating perturbations with conserving 

amplitudes. In this regard within the framework of classical and generalized 

Melnikov formalisms, corresponded improper Melnikov integrals are converging.  

In this work, we will consider the perturbing process as dynamical process 

with its own dissipation, having amplitudes of perturbing oscillations decreasing in 

time. This change of amplitudes is usually close to an exponential decrease to some 

stable levels. If we formally consider such perturbing oscillations back in time (and 

on the negative semiaxis of time), then we will see unbounded exponential growth 

of amplitudes. In this case the Melnikov integrals will be non-converging. This 

circumstance obviously destroys the mathematical logic of classical formalism, and 

the Melnikov method ceases to be workable. Therefore, it is necessary to develop 

some adaptation of the Melnikov method for applications with damped oscillatory 

perturbations. This important adaptation is presented in the section #6 of the paper.  

In this paper, the adaptation of the Melnikov method is performed on the basis 

of task studying the attitude dynamics of a nanosatellite with small oscillations of its 

movable unit in the presence of constructional damping. This study represents the 

main applied objective of this article, but nonetheless it plays the role of a base 

application for the developing the fundamental approach to the extension of the 

Melnikov method application. 



The class of micro- and nanosatellites is increasingly used in space flights and 

is described in scientific papers [Aslanov, V.S. (2021); Bandyopadhyay, S., Foust, 

R., Subramanian, G. P., Chung, S. J., & Hadaegh, F. Y. (2016); Belokonov, I. V., 

Timbai, I. A., & Nikolaev, P. N. (2018); Blackwell, W., Pereira, J. (2015); Doroshin, 

A. V. & Eremenko, A. V. (2019, 2021); Ovchinnikov, M. Y., & Roldugin, D. S. 

(2019); Liang He, Wenjie Ma, Pengyu Gao, Tao Sheng (2020); etc.]. Further in the 

paper it will be shown, that the concept of a nanosatellite with movable unit is close 

to the model of a rigid body with perturbations. This allows to prove the workability 

of presented adaptation of the Melnikov method on the basis of classical model, as 

well as to formulate a new range of important tasks in the framework of rigid body 

dynamics under different perturbations with damping. 

It should be noted that the approach to estimating the Melnikov functions 

developed in this paper, in principle, makes it possible to obtain analytical results, 

but, unfortunately, we did not achieve any analytical results within the particular 

applied task under consideration. Therefore, in this work, numerical integration was 

used to estimate the specific properties of the Melnikov function. 

The following assumptions were used for nanosatellite dynamics modeling. 

First, the attitude dynamics of a nanosatellite as a mechanical system is considered 

in the inertial frame, the same way as it is in the classical task of a rigid body motion 

about a fixed point. Moreover, we investigate the torque-free attitude dynamics of a 

nanosatellite, not affected by any external forces and torques. These assumptions are 

quite useful for modeling of the orbital dynamics on a short stretch of orbital motion. 

Second, all of the internal perturbations acting inside the mechanical system are 

small, and, therefore, we can use the linearization approach in the framework of the 

mathematical model construction. Third, the dissipation has natural reasons (internal 

friction, heat extraction, etc.), that is present inside of a mechanical system in the 

form of small damping perturbing oscillations. 

In view of the foregoing, this article has the following structure. Section 2 

presents the construction of basic models of the angular motion of a nanosatellite 

with the movable unit. Further, section 3 shows the reduction of a nanosatellite 

model to the model of a single rigid body with small perturbations based on the 

assumption of small oscillations of the movable unit. Section 4 provides analytical 

preparation to using the classical Melnikov method. Section 5 presents the analysis 

of dynamics with small oscillations of the movable unit having the simplest form of 

undamped harmonic oscillations without any dissipation, which is based on the 

classical Melnikov method, as well as shows the arising heteroclinic chaos. The final 

section 6, presents the development of the Melnikov method adaptation along with 

the investigation of chaotic dynamics of a nanosatellite at the presence of natural 



dissipation with damping of perturbing oscillations with the help of the mentioned 

adapted method. 

2. Mechanical and mathematical models 

Let us consider the mechanical model (fig.1) of a nanosatellite with a movable 

unit [Doroshin, A. V., & Eremenko, A. V. (2019, 2021)]. In this case, the 

nanosatellite consists of two parts - the carrying main body, and the movable unit, 

attached to the carrier body by means of flexible rods. 

The movable unit can perform angular motion relative to the main body due 

to changing the lengths of the flexible rods. We shall assume that the point O is the 

rotation center of the movable unit, i.e. the point O is fixed relative to the main body.  

 

Figure 1 – The nanosatellite structure: 

1 – the main body, 2 – the movable unit, 3 – control systems of flexible rods 

extraction, 4 – flexible rods. 

 

In the present research we will use the following coordinate systems: 

- 
1 1 1 1C X YZ  is a principal body-fixed coordinate frame of the main body, where 

the point C1 is the center of mass of the main body; 

- 
2 2 2 2C X Y Z  is a principal body-fixed coordinate frame of the movable unit, 

where the point C2 is the center of mass of the movable unit; 

- CXYZ is a coordinate frame with the origin in the center of mass of the 

complete system, which axes are parallel to the main axes of the main body. The 

point C is the center of mass of the complete nanosatellite. 



Let us write the expression for the system angular momentum as the sum of 

the angular momentums of its parts. The angular momentum vector in the coordinate 

frame CXYZ has the form: 

1 1 2
K = K +δ K ,     (1) 

where 
1
δ  is the transition matrix from the 

2 2 2 2C X Y Z  coordinate system to the 

1 1 1 1C X YZ  coordinate system, 
1

K – is the angular momentum of the main body in the 

frame 
1 1 1 1C X YZ , 

2
K – is the angular momentum of the movable unit in projections 

on axes 
2 2 2 2C X Y Z . 

Let us assume that the angular displacements of the movable unit can be 

possible only around the direction C2X2 on a small angle 1  . Then the following 

linearized matrix takes place (we neglect the terms of order 2  or less): 

1 0 0

0 1

0 1





 
 

 
 
  

1
δ .      (2) 

The angular momentums of the nanosatellite parts in CXYZ are: 

1 1 1
K = I ω ,      (3) 

2 2 2K = I ω ,      (4) 

where 
1 2,I I  – are the inertia tensors of the main body and the movable unit: 
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0
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z

I

I k

k I





 
 


 
  

I ,     (5) 
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2 2 2

2 2

0 0

0

0

x

y

z

I

I k

k I





 
 


 
  

I ,     (6) 

 

1m  is the mass of the carrier body, 
2m – is the mass of the movable unit, 

1 1 2( )1 1 2k m l l - z - l  , 
2 2 1 2( )1 2k m l l z - l   ,  1 1 1 2 2l m z m m  , 

 2 2 2 2 2l m z m m  , 
1z  – is the distance between points 

1С  and O, 
2z  – is the 

distance between points 
2С  and O. For the moments of inertia, we have the 

following expressions obtained with the help of the Steiner’s theorem while 

neglecting the terms of the second order by a small angle  2 0   or less: 

   
2 2

1 1 1 1 2 1 1 1 1 2 1; ; ;x b y b z bI A m z l l I B m z l l I C          

 
2

2 2 2 2 2 1 2;x y u z uI I A m l z l I C      , 



where (Ab, Bb, Cb) – are the main central moments of inertia of the main body and 

(Au, Bu, Cu) – are the main central moments of inertia of the movable unit (the unit 

is dynamically symmetrical and, therefore, Bu=Au). 

The angular velocity of the main body in projections on the axes of the 

1 1 1 1C X YZ  coordinate system is: 

  , ,
T

p q r
1
ω . (7) 

Taking into account the relative rotation, the angular velocity of the movable unit in 

projections on the axes of the 
2 2 2 2C X Y Z  is: 

0

0

p p

q q r

r r q

 





     
     

   
     
          

2 2
ω δ ,    (8) 

where 
2
δ – is the linearized transition matrix from the coordinate system 

1 1 1 1C X YZ  

to the 
2 2 2 2C X Y Z : 

1 0 0

0 1

0 1





 
 


 
  

2
δ .     (9) 

 

To analyze the attitude dynamics of the nanosatellite, it is appropriate to write 

dynamical equations using the well-known canonical Serret-Andoyer-Deprit 

variables [Andoyer H. (1923), Deprit A. (1967), Serret, J. A. (1866)]. The Serret-

Andoyer-Deprit variables (h, g, l) and corresponding canonical conjugate momenta 

(H, G, L) describing the spatial position of the angular momentum vector K 

relatively the main coordinates frame CXYZ and the “fixed inertial” frame Cξηζ. 

Here it is appropriate to give a brief description of the canonical Serret-Andoyer-

Deprit variables. Let us build a plane CBE orthogonal to the angular momentum 

vector K. This plane intersects the plane Cξη along the straight line CB, and also 

intersects the plane CXY along the straight line CE. Then the planar arc AB  

corresponds to the angle h; the planar arc BE  corresponds to the angle g; the planar 

arc EF  corresponds to the angle l. The corresponding canonical conjugate momenta 

are denoted as H, G, L. Moreover, it is known that G=|K|, H=K∙k’, L=K∙k, where k 

and k’ are the unit-vectors of axes CZ and Cζ. 

The angular momentum components in the frame CXYZ can be expressed 

through the Serret-Andoyer-Deprit variables in the form: 

 
2 2

2 2
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.
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z

K G L l
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K L
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
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



     (10) 

In addition, we must add the canonical momentum   for the relative rotation 



angle α: 

 2x

T
I p 




   


,     (11) 

where T  is the kinetic energy of the nanosatellite: 

 

 
1

2
T    

1 1 2 2
K ω K ω .    (12) 

 

 

Figure 2 – The canonical Serret-Andoyer-Deprit variables 

 

Using (7)-(12) we can explicitly express , , ,p q r   in terms of the Serret-Andoyer-

Deprit variables: 

 

2 2

2

2 2

2 2

2 2

2

2 2
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;
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
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
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     (13) 

where 
1 2cx x xI I I  , 1 2cy y yI I I  , 

1 2cz z zI I I  , 2 2 1 2y zk I k k I    , and where 

terms of order higher than one in α have been neglected. The symbol “⁀” above the 

variable now and further indicates the explicit expressions for angular velocity 

components through the Serret-Andoyer-Deprit canonical variables – these 

expressions will be substituted into the expression of the kinetic energy to write the 



explicit expression of the Hamiltonian. On the basis of equations (12) and (13) we 

can write the explicit Hamiltonian of the mechanical system in potential fields: 

     , , , , , , , , , , , , , ,p q r l g h L G H lT P g h     .  (14) 

 

3. The general case of the system motion close to rigid body dynamics 

At the start of our research, we will consider the torque-free dynamics of 

considered system in a “monobody” format without any external and internal forces. 

This will be the general unperturbed case, when we investigate the torque-free 

motion of the nanosatellite as a mechanical system consisting from two rigid bodies 

“glued into a single rigid form” (at small relative angular displacement of the 

movable unit). Due to the smallness of the angle α of a relative position of the 

movable unit, the described mechanical system can be considered as a rigid body, 

but in the presence of small changes of its inertia-geometrical parameters depending 

on the α value [Doroshin, A. V., & Eryomenko, A. V. (2021-b)]. Then we can 

consider the angle α as a geometrical parameter, which defines the 

geometrical/kinematical constrain α = α(t). This assumption allows to write the 

general unperturbed expression for the Hamiltonian as the Hamiltonian of the 

torques-free single rigid body with small parametrical perturbations: 

T .  (15) 

In this consideration, the fourth canonical coordinate and corresponding 

canonical momentum {α, A} lose their independent meaning. Then it is possible to 

write the following expressions for {p, q, r} through the Serret-Andoyer-Deprit 

canonical coordinates formally introduced for a single rigid body with small 

additions: 

2
0

0
0

0
0

;

;

;

x

cx

cy

cz

I
p p

I

kr
q q

I

kq
r r

I








 




 



 


      (16) 

where the following expressions are completely correspond to the Serret-Andoyer-

Deprit coordinates for a single rigid body with general inertia tensor 

 ˆ , ,cx cy czdiag I I II : 

2 2

0

2 2

0

0

1
sin ;

1
cos ;

.

cx

cy

cz

p G L l
I

q G L l
I

L
r

I


 




 






     (17) 



Substituting equation (16) into (12), we will obtain the expression of the kinetic 

energy and the Hamiltonian at the linear approximation by α: 

 2 2 2 21 2
0 0 0 0 0

1

2 2

x x
cx cy cz

cx

I I
I p I q I r k q r

I
      .  (18) 

It is possible to divide the expressions (18) in parts, proportional to a small parameter 

μ. Then we will have a “generating part” 
0
 and perturbed parts 

2

1 2, :   
2

0 1 2 ...     ,    (19) 

where  

   
2 2 2

2 2 2 2 2

0 0 0 0 2 2 2

1 1 sin cos

2 2
cx cy cz

cx cy cz

l l L
I p I q I r G L

I I I

  
         

   

, (20) 

2 2

1 0 0 cos
cy cz

L
kq r k G L l

I I
       ,  (21) 

2 2 21 2
2

2

x x

cx

I I

I
   .     (22) 

Here   is a formal small dimensionless parameter  1   denoting the small 

deviation of relative angular motion of the movable unit   . It is worth to note, 

that the part (22) formally follows from the kinetic energy expression (18) as the 

term proportional to the second power of the small parameter, but this part will be 

real small at a smallness assumption of the angular velocity  . On the other hand, 

the part (22) do not contain any Serret-Andoyer-Deprit coordinates, and, therefore, 

it will not influence on dynamics of the considered dynamical system in the Serret-

Andoyer-Deprit phase space. In any case, we shall omit the term 
2

2  from the 

following research. 

So, the expression (19) corresponds to the usual Hamiltonian of the 

unperturbed rigid body 
0
 with small perturbations proportional to the first power 

of the small parameter 
1( )  defined by variability of the “geometrical” parameter 

α. Then the system of Hamilton’s equations in the Serret-Andoyer-Deprit canonical 

coordinates is:  

; ;

; ;

; .

L l
l L

H h
h H

G g
g G

 
  

 

 
  

 

 
  

 

     (23) 

As we can see from the Hamiltonian (19)-(21), the mechanical system is 

completely described by the pare of coordinates (l, L), since 

0H
h


  


,     0h

H


 


,    0G
g


  


. 

The coordinate g(t) can be integrated separately after the integrations for (l, L), and, 



therefore, the coordinate g(t) do not influence on the main dynamical properties. 

For convenience, we write the system of differential equations (23) in the 

following form: 

; ;L L l lL f g l f g         (24) 

where 

0 1

0 1

; ;

; .

L L

l l

f g
l l

f g
L L

 
   

 

 
 

 

    (25) 

The system (24) completely describes the dynamics of a rigid body in the presence 

of small perturbations in its inertia parameters due to small variability of the body 

shape (in accordance with the “geometric” parameter α) in the linear approximation. 

4. Detecting the possibility of chaotic regimes in dynamics 

It is a known fact, that a rigid body under the action of external perturbations 

or in the presence of internal asymmetric rotators or movable elements can have 

chaotic regimes of the angular motion [Aslanov, V.S. & Doroshin, A.V. (2010), 

Aslanov, V. S. (2015), Aslanov, V.S. (2021), Beletsky V.V. (1995), Chen Li-Qun, 

Liu Yan-Zhu (2002), Doroshin, A.V. (2012-2018), Doroshin, A. V., & Eremenko, 

A. V. (2019, 2021-b), Holmes, P.J., & Marsden, J.E. (1983), Iñarrea, M. (2009), 

Iñarrea, M. & Lanchares, V. (2000), Iñarrea, M., Lanchares, V., Rothos, V. M., 

Salas, J. P. (2003), Kuang Jinlu, Tan Soonhie, Arichandran Kandiah, Leung A.Y.T. 

(2001), Kuang, J.L., Meehan, P.A., Leung, A.Y.T. (2006), Leung, A.Y.T., Kuang, 

J.L. (2007), Peng, J., & Liu, Y. (2000), Ziglin S. L. (1980)].  

The chaotic dynamics can be associated with the presence of 

homo/heteroclinic nets in the system phase space. To detect the homo/heteroclinic 

nets we can use the Melnikov’s method [Melnikov, V.K. (1963)] and its 

multidimensional modifications of Wiggins [Wiggins, S. (1988-2003)] or Holmes 

and Marsden [Holmes, P.J., & Marsden, J.E. (1983)]. 

In this section of the article, we will use the classical Melnikov method. In 

accordance with this method, the fact of the appearance of chaos can be confirmed 

by the presence of simple roots of the so-called Melnikov function.  

The Melnikov function for the perturbed system (24) has the form: 

 
    

 
    0 0

0 0 1 , , , ,
( ) , L l l LL t l t t t L t l t t t

M t dt f g f g dt

 

 
 

    , (26) 

where {∙,∙} is the Poisson bracket. Here    ,L t l t  are the explicit exact solutions 

corresponding to one of the four possible heteroclinic orbits, which can be expressed 

through the well-known heteroclinic solutions       0 0 0, ,p t q t r t  for the torque-

free dynamics of a rigid body [Holmes, P.J., & Marsden, J.E. (1983); Iñarrea, M., 

Lanchares, V., Rothos, V. M., Salas, J. P. (2003); etc.]: 
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




   (27) 

where the number  1,2,3,4j   selects one of the four heteroclinic trajectories; the 

operation  int x  denotes the integer part of the number x; 

    0 cx cy cy cz cx cy cza T I I I I I I I   ; 
0T  - is the initial value of the doubled kinetic 

energy E of the rigid body on the heteroclinic trajectory: 

 0 2 const,T E   (28) 

where  

 2 2 2

0 0 0

1

2
cx cy czE I p I q I r   . 

In solutions (27) and further in the paper the following restriction for inertia 

moments is actual: 

cx cy czI I I  . 

Now we need to write the functions , , ,L l L lf f g g . With the help of the 

expressions (17) it is possible to obtain: 
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
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 



 

 
    

 

   

 (29) 

 
Then the integrand in (26) has the following form: 

 

 
    

        
0

0 0 0 0, ,
, ,L l l L L t l t t t

f g f g t t f p t q t r t


   ,  (30) 

where 
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   
       

 
     

 (31) 

Taking into account the fact, that the component  0p t  is an even function (this 

follows from (27)), and that 
2 2 2

0 0 0, ,p q r  are also even functions, we can conclude that 

the function f(t), given in (31), is also an even function (fig.3). 

 

 

Figure 3 – The typical form of the function f(t) (31) 

 

Now to detect chaotic regimes using the Melnikov’s function (26) we only 

need to know the specific functional form of dependence  0t t   , which 

defines the result of the improper integration (30).  



5. The analysis of the chaotic dynamics on the assumption of simplest 

perturbation forms 

As a first simplest but a very important case of dynamical analysis, in this 

section we will use the time-dependence of the angle  t  , which corresponds 

to the simplest harmonic form: 

 0cos ;

const; 1.

t + t  



   

  
   (32) 

The form (32), foremost, can simulate usual simplest flexible oscillations of 

the movable unit on flexible elastic rods neglecting the factor of dissipation 

properties (this can be an appropriate simulation at least for some finite time 

interval). Secondly, the small harmonic oscillations (32) can arise due to small error-

delays in the control system [Doroshin, A. V., & Eremenko, A. V. (2021-a)], 

stabilizing the relative longitudinal angular position of the movable unit. In addition, 

such oscillations can be intentionally generated by the control system to ensure the 

transition to the chaotic mode [Doroshin, A. V. (2018-b)] for the purpose of 

nanosatellite reorientation. In any case, the form (32) can be used as a simplest 

primary perturbing factor to the direct application of the classical Melnikov method. 

The substitution of the expression (32) into (30) after simplifications gives the 

following Melnikov function: 

0 0 0( ) cos( ) cos( ) ( ) sin( ) sin( ) ( )M t t t f t dt t t f t dt 
 

 

       . (33) 

As it was already indicated above, the function ( )f t  is an even function. Since sin( )t  

is an odd function, the improper integral of the odd function ( )sin( )f t t  will be equal 

to zero, and, therefore: 

0 0( ) cos( ) cos( ) ( )M t t t f t dt




   .    (34) 

The integrand in (34) is an even function, and then the value of the improper integral 

will correspond to the nonzero signed area Λ bounded bycos( ) ( )t f t : 

0 0 0( ) cos( ) cos( ) ( ) cos( ),M t t t f t dt t 




         (35) 

( )cos( ) const 0f t t dt





     .    (36) 

As we can see, the Melnikov function in the considered simplest case is the function 

(35) with usual oscillatory behavior and with nonzero amplitude (36). The amplitude 

(36) will be equal to zero only in critical cases when Ω=0 and Ω=∞, that can be 

checked numerically (fig.4-a). Therefore, the Melnikov function has infinite 

quantity of simple roots. This fact proves the presence of the heteroclinic chaos in 

the dynamics. To illustrate the corresponded heteroclinic chaos in this case we can 

plot the Poincaré section/map for unperturbed (fig.4-b) and perturbed (fig.4-c..f) 

dynamics at some nonzero values of the parameters μ and Ω. 



All of the calculations here and in other sections of this article were performed 

using the numerical values of parameters from the table 1. 

The Poincaré sections (fig.4–b..f) represent complete forms of the main phase 

space (l, L/G) in dynamical sense and fully describe the dynamical behavior for all 

of the possible initial values. Points of the Poincaré section are added on the plane 

(l, L/G) at fulfilling of predefined conditions. Within the present research the 

“stroboscopic” condition is selected, and the points are added to the Poincaré section 

at discrete time-moments when  mod ,2 0t    . 

As it is known, the points of the Poincaré sections can form continuous lines, 

corresponding to the regular phase trajectories, or vice versa, can fill by individual 

points entire regions of the phase plane – they can be called as the “chaotic layers”. 

 

Table 1 – Inertia-mass parameters of the nanosatellite  

and initial conditions of the motion along the heteroclinic trajectory 

 Parameters Values 

 

Parameters Values  

m1 [kg] 2 m2 [kg] 1 

bA  [kg∙m2] 0.013 uA  [kg∙m2] 0.0025 

bB  [kg∙m2] 0.009 uB  [kg∙m2] 0.0025 

bC  [kg∙m2] 0.006 uС  [kg∙m2] 0.0035 

1z [m] 0.08 2z [m] 0.04 

  [kg‧m2/s2] 0.006 T0 [kg‧m2/s2] 0.0054 

 0  [rad] 0.1  0 0p  [rad/s] 0.4000 

 0 [rad/s] 0  0 0q  [rad/s] 0.0000 

G [kg‧m2/s] 0.0107  0 0r  [rad/s] -0.3818 

 

As we can see, in the absence of perturbations the considered system has the 

quality form of the physical pendulum (fig.4-b). We can notice the chaotic layers to 

appear under the perturbations (fig.4-c..f), as well as the generation of new additional 

heteroclinic bundles of secondary separatrices, which can also be splatted under 

perturbations. 

The Poincaré sections (fig.4) can quite fully explain the main dynamical 

properties of the attitude motion of the nanosatellite. The same technique of the 

“stroboscopic” Poincaré sections will be used below in studying cases of the system 

dynamics at the perturbing oscillations with damping. In addition the fig.4 also 

demonstrates the influence of the perturbation frequency Ω on the width of chaotic 

layers in accordance with the frequency response Λ(Ω) (fig.4-a). 



          
(a):  the amplitude (36)   (b):  μ=0.0;  Ω=1.0 (ⱯΩ) 

            
(c):  μ=0.1; Ω=1.0    (d):  μ=0.1; Ω=0.7 

             

(e):  μ=0.1; Ω=0.3    (f):  μ=0.1; Ω=0.1 

Figure 4 – The amplitude Λ(Ω) and Poincaré sections 
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6. The chaos detection in the dynamics of a dissipative system with 

damping natural perturbations 

6.1. The solution for perturbing oscillations  

Now let us consider the case of the nanosatellite motion when disturbances 

caused by the natural dynamics. To obtain the natural form of the small perturbation 

α(t), we can use the Lagrange formalism, which allows to write the equation: 

d T T
M

dt


 

  
  

  
.     (37) 

The torque M
 is caused by the elastic forces of the flexible rods, and by the friction 

forces: 

M     .      (38) 

where 2kg×m / s    , 2 2kg×m / s     – are coefficients of damping and elasticity, 

which also can be considered as feedback coefficients of the control system to 

extracting the flexible rods and to rotating the movable unit (fig.1). 

From expressions (38) and (37) we can obtain the equation: 

 0 0

2 1

cx

x x

I
kq r

I I
      .    (39) 

If we substitute into (39) the dependencies for the heteroclinic trajectory, then we 

can describe the dynamics of the angle α strictly along the heteroclinic separatrix 

(27). It is the dynamics of α(t) in the vicinity of the separatrix, which we will consider 

as the perturbing dynamics. In this case, we can write the equation: 

 t  φ M φ F ,      (40) 

where 

   2
0 0
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2 1 2 1 2 1
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I I I I I I



 

 

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               

      

φ M F

  (41) 

The formal analytical solution of the system (40) for     ,t t   is: 

     
 

 
     1 1

0

0
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t t t d
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 

φ Φ Φ Φ Φ F  (42) 

where the following fundamental matrix is used: 
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Φ Φ

   (43) 

It case of the small oscillations, we can assume that the initial values are: 

   0 1; 0 0     .    (44) 



6.2. The analytical scheme of the Melnikov method adaptation 

 Basing on the first component of solution (42) we can write the integrand (30): 

 
    

        
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
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       

 
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



 (46) 

The expression (46) represents the rewritten form of analytical solution for the angle 

 0t t   strictly along the heteroclinic separatrix. The expression (46) corresponds 

to the real function, regardless of complex conjugate values λ1,2 (43). 

In the framework of presented adaptation we can change the integration 

variable in the Melnikov integral (26): 

0t t   .      (47) 

Let us remind, that t (and τ) – is the usual physical time of the dynamical process; 

and t0 – is the “sliding parameter”, which describes local positions along the 

unperturbed separatrix. The parameter t0 also defines the t0–parametric family of the 

heteroclinic solutions shifted relative to each other along the physical time axis. In 

other words, the parameter t0 shifts the starting point along the heteroclinic separatrix 

and changes the initial conditions of the motion. After changing the variable (47), 

the Melnikov integral (26) can be rewritten in the equivalent form: 

 
    0 0

0 , ,
( ) L l l L L t l t

M t f g f g d
  




 


  ,   (48) 

where the specific shape of the integrand is: 

 
    

        
0 0

1 0 0 0 0 0 0, ,
, ,L l l L L t l t

f g f g f p t q t r t
  

    
 

      .   (49) 

As we see from (49), the sliding parameter t0 now “shifts” along the τ-axis the graph 

of the factor f(τ-t0), which is analytically defined by the expression (31). The factor 

 1   corresponds to the time-dependence of the small perturbation (in the present 

case it is a small angle α(τ)).  

 

 Here we should give some comments on the improper integration during the 

calculation of the Melnikov integral in the form (48) with the integrand (49). 

 

1) The Melnikov integral (48) as an improper integral can not converge when 

the perturbation  1   is unbounded, and can converge to its bounded value in such 

cases when the function f(τ) is converging to zero at   , and when the 

perturbation  1   is bounded (and, moreover, small) on the whole interval 

 ,    . 

 



2) If the Melnikov integral (48) is converging and the function f(τ) is an even 

function converging monotonically to zero (fig.5-a) at   , then it is possible to 

select the closed interval  conv conv,     as an integration interval to calculate the 

value of the integral (48) with any high predefined accuracy at any bounded function 

 1  .  

 

Firstly, let us show the convergence of the improper integral (48) in cases 

when the bounded even function f(τ) is converging exponentially fast and 

monotonically to zero at    and when the function  1   is bounded. 

▼ 

1. If the function  1   is bounded, then 

   1 sup, : const          . 

2. If we have the bounded even function f(τ) converging exponentially fast 

and monotonically to zero at   , then the signed area |f(τ)| will be equal to 

some constant: 

  constI f d S 


 



   . 

It is easy to understand from the convergence property of the improper integral IR 

with a lower rate R>0 of exponential convergence (in comparison with the rate of 

exponential convergence of the even function f(τ) at   ):   

      ( ) const 0 : 2 Rour f R I I      ,  where  
 

0

0
0 Rt

R

f
I f e dt

R



  . 

This means the absolute convergence of the integral I+.  

 

3. From the absolute convergence of I+ the convergence of the improper 

integral (48) follows: 

       0 sup 1 0 0 0 1: ( )t S f t d t f t d        
 



 

       , 

therefore, the improper integral (48) is converging. 
▲ 

Secondly, let us define the parameter 
conv  more accurately:  

▼ 

As we have already shown, the integral (48) is converging at any t0. Therefore, 

we can calculate this integral by numerical methods with any predefined accuracy 

for any arbitrary value t0. Moreover, in the framework of the numerical calculation 

with the predefined accuracy δ, we can detect the appropriate bound of numerical 

integration  0 0,t t     at calculations for the specific value 
0t : 

         
0

0

0 0 1 0 1

t

t

M t f t d f t d









       



 

     .  (50) 

Choosing an interval of interest 0 0 0,begin endt t t   , we can find the largest 



integration bounds sup

  to guarantee the accuracy δ for the integral value on the 

whole interval 0 0 0,begin endt t t   . So, we can define this value as an integration bound 

conv  which guarantee the predefined accuracy δ of the improper integral (48) 

calculation: 

     
0

0

0 0 0

0 1 0

, :

,
conv

conv

begin end

conv

t

t

and t t t

f t d I t





 

    





     

  
    (51) 

where  0I t  is the exact value of the integral (48). 

▲ 
With the above explanations fulfilled we can make the following third 

comment. 
 

3) The graph of the integrand (49) depends on the sliding parameter t0, but it 

has a bounded shape (the blue curve at fig.5-b, -d) converging to zero on the closed 

interval  0 conv 0 conv,t t     . Moreover, the signed area bounded by (49) on the 

interval  0 conv 0 conv,t t      will correspond to the value of the improper integral 

(48), calculated with the accuracy δ. Let us call this geometrical shape as “the 

Melnikov hill”. This hill slides along the τ-axis and changes its own area at the 

change of the sliding parameter t0 value. Values of the Melnikov function 
0( )M t  

will be equal to the Melnikov hill areas at specific values of the sliding parameter t0 

with the accuracy δ.  

 

It is important to note here, that the Melnikov hill parametrically slides 

together with the sliding parameter t0 over the “fixed” graph of the small perturbation 

 1   (green lines in fig.5-b – d). In other words, only a limited part of the real 

physical perturbing time-process is essential inside the closed interval of the 

Melnikov hill   0 conv 0 conv,t t     : only this “local” time-interval 

  0 conv 0 conv,t t      of the real physical time τ of the perturbation time-process 

defines the area of the Melnikov hill at any t0. 

As it follows from the solution (42), the unbounded formal amplitude growth 

takes place for negative values of the time (fig.6); moreover, this infinite growth can 

be practically “instantaneous” (in reversed negative time) for large damping values. 

This aspect does not allow to consider the perturbation as bounded on the whole time 

interval (-∞< t <+∞), and, therefore, the Melnikov integral will not converge. 

However, it cannot be realized physically: the real dynamics arises for the zero value 

of the physical time (at the specific initial conditions), and further this process is 

carried out in the positive direction of time (t→+∞). 

 



   
   (a)       (b) 

 

  
   (c)       (d) 

Figure 5 – The Melnikov “hill” slide: 

f(τ-t0) – red;  1   – green; the Melnikov “hill” – blue 

 

 

 
Figure 6 – The unlimited formal amplitude (42) growth  

of perturbations for negative values of time 



To use the Melnikov’s formalism correctly and to calculate the integral (48) 

we can define the following shape of the small α(t)-angle perturbation based on the 

solution (42): 

 
 1

1

, 0;

0, 0,

t if t
t

if t


 

 
 


     (52) 

or, the same is 

     1 1Ht t t   ,     (53) 

where  H t  is the Heaviside function. The form of the small perturbation (53) 

describes the natural physical perturbation time-process, that absents before its own 

start (at t<0). The time-dependence  1 t   has different forms (fig.7) for various 

values of damping ν.  

In the first limiting case at ν = 0, the dependence  1 t   have a tendency to 

pure harmonic oscillations. In the second limiting case at ν = ∞ the dependence 

 1 t   keeps its initial value constant (that can be expressed with the help of the 

Heaviside function): 

   1 Ht t   .     (54) 

 

Figure 7 – The  1 t   at different values of damping ν 2kg×m / s    

Let us calculate the Melnikov integral (48) in the case of the infinitely large 

damping (ν=∞) with the corresponded perturbation (54): 
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  (55) 

For the purpose of analytical integration of the integral (55), we can rewrite function 

f(t) using expressions (29): 

 1 t   



 
   

     

3 2 2 2 2 2 2

0 0 0 0 02 2 2
0 0

2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 02 .

L l l L
cx cz cy cz cx

cy cz cz

cz cz cx cy cx cy cz cy cx cy

f g f g k
f t p r I I q r p I I I

t t I I G I r

r G I r p I I G q p I I I r q p I I I I




   

  


      



    (56) 

Here it is possible to remind the following expressions for the angular momentum 

components of a rigid body (that also will be true for the heteroclinic case as well): 
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 (57) 

With the help of (57) we can simplify (56): 
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  (58) 

Now the analytical value of the integral (55) follows: 
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From (58) we also can find analytically the signed area Sf bounded by f(t). It 

is exactly equal to zero1: 

     0 0 0fS f d kq r   







   .   (60) 

The numerical values of the Melnikov integral (55) and analytical calculations 

(59) are presented in figure (fig.8). This result is fully expected and analytically 

verified. The shape of f(t) with the zero-value of its area (60) does not depend on 

specific parameters of the system – it is fully defined by the invariant heteroclinic 

properties of the unperturbed rigid body dynamics. 

As we see from the results for the Melnikov integral (55), in the case of 

infinitely large damping (under the piecewise perturbation (54)), the simple zero 

                                                           
1 Also from the fact Sf = 0, we can conclude, that the blue area under the f(t) curve (fig.3) is exactly equal to the finite 

red area. Then, moreover, it is obvious that the absolute area I+ will be exactly equal to twice the value of the red area, 

i.e. I+=const and, therefore, the improper integral (48) is converging.  



takes place at t0=0. At the same time, it is obvious that the case of the motion for the 

infinitely large damping value is fully regular, because all perturbing oscillations 

here are completely eliminated. This is a prime example of the possible existence of 

several Melnikov’s integral zeros, which arise formally in known regular cases as 

zero-areas of Melnikov hills only due to the geometrical properties of the curve f(τ) 

and the piecewise perturbing factor (52). Such formal zeros can also be possible in 

other cases for piecewise functions of perturbations (52). So, let us call such formal 

zeros of the Melnikov hills/functions as the “fictive zeros”. We should ignore such 

fictive zeros in analysis of roots in the modified Melnikov method. In the task of the 

nanosatellite with movable unit we have only one fictive zero (fig.8).  

 

 

Figure 8 – The single fictive zero of the Melnikov integral (55) for the  

extremely large damping value (ν = 100): 
red line – numerical calculations of (55); blue dots – analytical values (59) 

 

At the decrease of the damping value, the form of perturbations (52) will 

change (fig.7); and we will detect the appearance of new simple roots of the integral 

(48) besides the fictive zeros. Exactly this appearance of such new roots will indicate 

the birth of the heteroclinic chaos in the dynamics. Therefore, these new zeros can 

be called as the “substantial zeros”. We should note that in fact, all of the infinite 

quantity of substantial roots arise immediately with the first one, but they can be 

invisible in the current tolerance scale, and they become quite visible when the 

damping will be reduced. 

So, to detect the chaos with help of the adapted Melnikov formalism, we have 

to detect the substantial zeros of the integral (48) with piecewise functions of 

perturbations (52): 
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6.3. The numerical evaluation of the chaotic dynamics properties 

 

We cannot analytically integrate the integral (61) in quadratures for arbitrary 

values of the damping. For this reason, we will conduct the numerical calculation 

for different values of damping with parameters from the table 1. 

First of all, it is possible to present the numerical results for the Melnikov 

functions (61), which are presented in fig.9. Figure (fig.9) shows the gradual 

deformation of the Melnikov function forms starting from the regular case (fig.9-a, 

upper detailed part of the figure) for the large damping value (ν = 55), and finishing 

with the obvious chaotic dynamics (Fig.9-f) for the small damping value  

(ν = 0.0001). This gradual deformation shows that the first substantial zero appears 

around ν < 35 (fig.9-a, the lower detailed part of the figure). The infinite set of 

substantial zeros becomes clearly visible at ν = 0.001 (fig.9-e). As we have already 

mentioned, the first substantial zero can be detected at ν = 35 [kg∙m2/s] – this value 

can be considered as the parametric boundary for the occurrence of the heteroclinic 

chaos. 

The detected boundary value of the damping can be confirmed by the Poincaré 

sections (fig. 10). The Poincaré sections are plotted, as previously, in the phase space 

(l, L/G) by the “stroboscopic” condition  mod ,2 0t     with the “basic 

frequency”  1,2Im    in accordance with (43); or when Im(λ) = 0, this frequency 

is equal to the natural frequency    of torque-free oscillations (41). 

It is worth to note some aspects following from numerical results. With an 

extremely large damping value the phase portrait and Poincaré section will have a 

typical unperturbed regular form (fig.4-b). For the boundary damping value the 

chaotic layer appears near separatrices (red points at fig.10-a). In case of the further 

damping decreasing, the chaotic layer develops and expands (fig.10-b – f).  

At the end of numerical confirmations we present the comparative calculation 

(fig.11) of the two forms of the Melnikov functions for the damping absence (ν = 0). 

The first variant corresponds to the classical Melnikov method with the function (35) 

at  0 0.1;      1.022 [1/ s], w  when the amplitude of the 

function (36) is equal to 
5.4200 8 10   [kg∙m2/s2]. In the second variant, the 

adapted Melnikov method was used and the function (61) was calculated for the 

same initial values. 

 



       
(a)       (b) 

       
(c)       (d) 

        
(e)        (f) 

Figure 9 – The Melnikov functions at different values ν  [kg∙m2/s] 
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  (a):    ν=35; =1.044             (b):    ν=5; =1.044 

          
  (c):    ν=0.5; =1.044              (d):    ν=0.05; =1.044 

        
  (e):    ν=0.0001; =1.021            (f):    ν=0.0; =1.022 

Figure 10 - Poincaré sections 
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Figure 11 – The comparative calculation  

of the two cases of the Melnikov functions M(t0) at ν = 0:  
the expression (61) – red line; the expression (35) – black dots on grey line 

Thus, based on numerical results, it is possible to finally confirm the 

workability of the presented adaptation of the Melnikov method for evaluating the 

parametric boundary of the heteroclinic chaos occurrence. 

Conclusion 

In the present paper, the problem of the heteroclinic chaos detecting in 

dynamical systems with damped perturbations was considered on the basis of the 

Melnikov method adaptation.  

The first advantage of the method adaptation is its workability in the cases of 

the perturbations amplitudes decrease. The adapted approach allows to ignore the 

formal infinite exponential growth of the perturbation amplitude in the reverse 

direction of time, when the classical method is inapplicable due to the non-

convergence of the improper Melnikov integrals. 

The second advantage of the developed approach is the transparent geometric 

interpretation of the value of the Melnikov function as an area of the Melnikov hill 

plotted for the specific point of the parametric time. The idea of the Melnikov hill 

allows to use only local closed interval of the physical time around the specific 

moment of the parametrical time in the framework of the Melnikov integral 

calculation. 

With the help of the adapted Melnikov method, the chaotic dynamics of a 

nanosatellite with a slightly movable unit was investigated. The corresponding 



critical “boundary damping values” were found in the case of damped perturbing 

oscillations of the movable unit.  
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