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Abstract. The paper considers the process of the controlled motion of a dual-spin nanosatellite. The main goal 

of control is to achieve a gravitationally stabilized position in a circular orbit in the shortest possible time. The 

dual-spin nanosatellite contains a gravitational damper and an internal rotor inside a movable unit. The 

movable unit can fulfill small controlled inclination relative to the main body of the nanosatellite. The 

mathematical model of the attitude dynamics of the nanosatellite is built and appropriate control laws are 

developed. Simulation results confirm the performance of the gravitational damper and efficiency of the control 

algorithm. 
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1. INTRODUCTION 

As is known, modern space missions involve the use of nanosatellites with the simplest 

equipment. In this regard, the development of effective simple methods for controlling and 

stabilizing the motion of nanosatellites is of great importance. 

Among such simple motion control methods, it is advisable to develop methods that use their 

own mobile functional elements of satellites as control elements and actuators. It is also important to 

use passive stabilization techniques and natural motion properties to control simple satellites 

In this paper, we consider the passive gravitational stabilizing principle, based on the action of 

the central gravitational field, when the nanosatellite fulfills its own orbital motion in a circular 

orbit. Then stabilization of the nanosatellite attitude relative to the orbital coordinate system will be 

possible at reducing the angular velocity of the satellite. It can be provided with the help of the 

unloading of the angular momentum and kinetic energy by the external torques and internal 

dampers. The viscous damping was considered in many works. Here we can indicate the pioneer 

scientific works of F. L. Chernous’ko [1, 2] where the spherical dampers in cavities with liquids 

were fundamentally studied; also the implementation of this classical scheme was investigated in 

applied aspects of the spacecraft dynamics in the gravitational field [3-5]; the magnetic version of 
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the damper was synthesized and described in [6, 7]; and later the spherical inertia geometry of the 

damper-body was generalized on the three-axial inertia body [8], that allows to use the gravitational 

torques more effective in the sense of the attitude stabilizing by the gravity gradient. 

The motivation for the paper is to develop the nanosatellite scheme, which allows using the 

natural properties of the dynamics of mechanical systems with movable elements to control the 

angular motion, and to stabilize the attitude position. In this connection, we will try in this work to 

construct the appropriate mechanical structure of the nanosatellite (fig.1) containing a main body, a 

gravitational damper, a movable unit with a internal rotor (fig.1, 2). If we activate the rotor rotation 

then this construction can be called as a dual-spin nanosatellite. The movable unit can tilt slightly 

relative to the main body. In this article, to move the movable unit relatively the main body of the 

nanosatellite, the flexible rods rolled up on small electric motors inside the main body are suggested. 

The deflection of the movable unit fulfills in this case by the internal electric motors, which 

change the length of the rods, and incline the movable unit relatively the main body. In the case of 

the planar inclination, this scheme of the unit deflection can be implemented on the basis of only 

two opposite electric motors with simple gears, pulling out flexible toothed belts-rods by the gears 

rotation on any predefined length. 

Of course, this scheme for moving the mobile module is still a purely theoretical development, 

but it has a very real chance for practical implementation.  

This nanosatellite design is justified by the possibility of the variable gyroscopic control torque 

creation with the help of only one internal rotor, and also by using the gravitational field to provide 

the attitude orientation and to passive stabilize it by the natural way. 

Appropriate control laws for the movable unit angular deflection and for the rotor angular 

velocity can increase efficiency of the damper action; and then the nanosatellite will achieve the 

gravitationally stable attitude. Let us find some control laws and investigate some cases of 

gravitational stabilization using all of indicated dynamical tools in the comparison with each other. 

The gravitational damper is the mechanical subsystem that consist of the rigid body with three-

axial inertia tensor rigidly fixed in the spherical capsule, which is placed into spherical cavity of the 

main body of the nanosatellite [8]; and moreover, the space between these spherical surfaces is filled 

by a viscous liquid medium (e.g., by bismuth, like in [6]). 

The action of the gravitational damper is based on the creation of the relative rotation of the 

internal spherical capsule and the main body of the nanosatellite due to the differences in the inertia 

moments, and, therefore, due to the differences in the absolute rotational motion in the central 

gravity field. This relative rotation is realized in a viscose medium and the corresponding liquid 

friction unloads the angular momentum and the kinetic energy of the attitude motion of the 
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nanosatellite. This relative rotation stops when booth bodies (the main body of the satellite and the 

body-damper) achieve gravitational equilibrium position on the orbit. These positions are target 

orientation positions. 

The inequality inertia moments of the internal damper-body represent the main principal 

difference of the mechanical and mathematical models of the gravitational damper from the classical 

models. The classical gravitational damper represents the spherical rigid body with the spherical 

inertia tensor also called as the model of M.A. Lavrentiev [1-5]. This spherical symmetry of the 

inertia tensor significantly limits the possibility of using different autonomous satellite equipment, 

instead of a sphere, in the role of the internal damper-body. And, moreover, the body with the 

spherical tensor inertia always has the stabilized gravitational position, and, therefore, the central 

gravity field does not include the damper rotation, that also limits the efficiency of the damper. 

 

2. MECHANICAL MODEL 

The mechanical model of the nanosatellite is depicted in Figure 1. In our research we will 

assume, that the relative angular displacements of the movable unit are small. These deflections do 

not change the position of the center of mass relative to the main body. In addition, we assume that 

the gravitational damper is placed exactly in the nanosatellite center of mass. The angular 

deflections of the movable unit are controlled by the control systems with flexible rods of variable 

length [9, 10]. 

We will use the following coordinate systems, where points Ci correspond to centers of mass of 

bodies, and point C is the center of mass of complete nanosatellite: 

- CXYZ – the orbital coordinate system located at the center of mass of the nanosatellite (the 

axis CZ is directed from the gravity center to the orbital position of the center of mass of the 

nanosatellite, the axis CY is orthogonal to the orbital plane and CX represents the third right 

axis); 

- С1x1y1z1 are the main central axes of inertia of the main body;  

- C2x2y2z2 are the main central axes of inertia of the gravitational damper (C2≡C); 

- С3x3y3z3 are the main central axes of inertia of the movable unit; 

- С4x4y4z4 are the main central axes of inertia of the rotor;  

- Сxiyizi has the origin in the center of mass of the complete satellite and has parallel axes to 

axes Сixiyizi. 
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Figure 1 – the nanosatellite construction: 

1 – the main body, 2 – the gravitational damper, 3 – the movable unit, 4 – the internal rotor, 5 - 

flexible rods control system, 6 - flexible rods. 

 

 

 

Figure 2 – The internal gravitational damper: 

Inside the spherical shell with the viscous medium, there is the inner spherical capsule contained 

with rigidly fixed triaxial body (some autonomous nanosatellite equipment). 
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For the purpose of explaining the mechanical structure of the system and damper device, it is 

ought to shortly remind the natural tendency of the rigid body in the central gravity to receive the 

so-called “stable gravitational position”. As it is known, the ellipsoid of inertia will be placed in the 

orbital reference frame in such way, that the axis of the minimum inertia moment will correspond 

to the “longitudinal” axis OZ, connecting the gravity center with the center of mass on the orbit; 

the intermedium axis of inertia coincides with the axis OX; and the maximum inertia axis of the 

inertia ellipsoid will be directed along the normal to the orbit plane OY. It is exactly as shown in 

the picture (fig.3).  

 

Figure 3 – The gravitational stable position (ω0 – is the orbital angular velocity) 

 According to this gravitational property, at the presence of internal dissipation properties in 

the system, the rigid bodies of the system will independently try to gradually proceed into stable 

gravitational positions in the orbital axes. Since the inertial properties of the bodies are different, 

they will make unequal evolutions of angular motion on the transition to the stable gravitational 

positions. Therefore the bodies will have relative motion and create friction in the contact of their 

surfaces, i.e. the relative angular motion of the bodies will create the dissipative friction inside the 

spherical shell with the viscous medium. The resulting dissipation of the kinetic energy allows the 

bodies of the system to gradually reach their stable positions in the central gravity field. This is the 

functional principle of the gravity damper, which clarifies its mechanical structure and design 

(fig.2). 

 Now let us assume some of the following conditions of motions of the mechanical system 

bodies. The movable unit is placed on the flexible rods rolled up on small electric motors inside the 

main body; and, therefore, these internal electric motors can change the length of the rods, and can 

move the movable unit. In our consideration, the movable unit can fulfill only planar deflections on 

the small angle α about the axis C3x3, which remains always parallel to the axis C1x1 (the angle α is 

the planar angle between the axis C3z3 and the axis C1z1, or, that is the same, it is the angle between 
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Cz3 and the axis Cz1,). Moreover, the center of mass C3 of the movable unit always lies on the axis 

C1z1. The rotor rotates around the axis C4z4, which always coinsides with the axis C3z3 of the 

movable unit, and, moreover, the center of mass C4 of the rotor and the center of mass of the 

movable unit C3 are also coincide (C3≡C4). The damper body is rigidly connected to the inner 

sphere. The damper body has threeaxial inertia tensor, and the center of mass of the damper body 

coinsides with the geometrical center of the inner sphere. The inner sphere spherically rotates with 

liquid friction around its own center inside the outer sphere, fixed in the main body. The center of 

mass of the damper body coinsides with the center of mass of the complete mechanical system (in 

other words, the center of mass of the subsystem of the nanosatellite without the damper body 

coinsides with the center of mass of the damper body; and both centers of mass therefore coinside 

with the center of mass of the complete system).  

3. MATHEMATICAL MODEL 

Assume that the movable unit on the flexible rods can make angular turns α around direction 

of the axis C3x3 relative to the main body with saving the center of mass of movable unit C3 on the 

axis Cz1 with the constant distance CC3. This assumption means that the movable unit was extended 

relative the main body to a certain distance by parallel extension of the rods, and after that it makes 

small planar turns around its own center of mass due to synchronous reciprocal movements of the 

rods. These planar angular displacements of the movable unit around its own center of mass can be 

fulfilled by the corresponding change of the flexible rods’ length, rolled up on small internal electric 

motors controlled by the control system of the nanosatellite. The rotor inside the movable unit 

rotates around the axis C3z3 by the angle   relatively the movable unit, and, moreover, the center of 

mass of the rotor C4 always coincides with the center of mass of the movable unit C3. We will also 

assume that the gravitational damper is located in the main body in such a way that its center of 

mass coincides with the center of mass of the satellite after it is brought into working condition 

(after the initial parallel extension of the module on the rods). This allows us to consider that the 

centers of mass of the satellite in the operating regime and the damper body always coincide. 

The damper-body affects the dynamics of the nanosatellite only through the viscous friction 

torque. In these assumptions, we can write the dynamical equations of our mechanical system on the 

basis of the law of the angular momentum changing: 

1

2
2 2

;

;

b gb

d gd

d

dt

d

dt

   

   

K
ω K M M

K
ω K M M

     (1) 
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where K  is the angular momentum of the complete nanosatellite without the damper-body, 2K  is 

the angular momentum of the damper-body, 1ω  is the absolute angular velocity of the main body of 

the nanosatellite, 2ω is the angular velocity of the damper-body, bM  is the torque of the viscous 

friction acting on the main body of the nanosatellite from the side of the damper-body, dM  is the 

torque of the viscous friction force acting on the damper-body from the side of the main body, 
gbM  

is the gravitational torque acting on the main subsystem (excluding the damper), 
gdM  is the 

gravitational torque acting on the damper. 

The angular momentum of the complete nanosatellite without the damper in the system Сx1y1z1 

can be written as follows: 

1 31 3 41 4 1 1 1 3 4 3 3( ) ,m m m     K K δ K δ K V ×R V ×R    (2) 

where 1K  is the angular momentum of the main body relative its own center of mass; 3K is the 

angular momentum of the movable unit relative its own center of mass; 4K  is the angular 

momentum of the rotor relative its own center of mass; 1V  - is the linear velocity of the mass center 

of the main body arising due to the angular motion of the nanosatellite around the common center 

of mass; 3V  - is the similar linear velocity of the mass center of the movable unit (and also the 

rotor); 1R  - is the vector of the center of mass of the carrier body relatively the center of mass of 

the complete nanosatellite; 3R  - is the vector of the center of mass of the movable unit and rotor 

body relatively the center of mass of the complete nanosatellite; 1m  - is the mass of the carrier 

body; 3m  - is the mass of the movable unit; 4m  - is the mass of the rotor. Here 31δ  is the transition 

matrix from the С3x3y3z3 coordinate system to the Сx1y1z1 coordinate system, and 41δ  is the 

transition matrix from the С4x4y4z4 coordinate system to the Сx1y1z1 coordinate system: 

31

1 0 0

0 cos( ) sin( ) ;

0 sin( ) cos( )

 

 

 
 


 
  

δ    (3) 

43

cos( ) sin( ) 0

sin( ) cos( ) 0 ;

0 0 0

 

 

 
 

 
 
  

δ    (4) 

41 31 43[ ][ ];δ δ δ       (5) 

where   is the angle of rotation of the rotor around the axis C4z4 (or around the axis C3z3, that is 

the same in our assumptions) relatively the movable unit. 
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The angular momentums of the system parts around their own centers of mass are: 

,i i iK = I ω    (6) 

where i  - is the part number: 1 - is satellite main body, 2 - is gravitation damper, 3 - is movable unit, 

4 - is rotor. Here iI – is the tensor of inertia of the body i, iω – is the absolute angular velocity of the 

body i. 

 The inertia tensors of bodies are: 

diag[ ; ; ],i i i iA B CI    (7) 

where iA , iB , iC  are principal central moments of inertia of the bodies. 

 To define the vectors iR , let us to involve the point O on the axis z1 and on the front side of the 

main body (fig.1) Then we can define the vectors of the centers of mass of the bodies (C1, C3, C4): 

 

 

 

1 1

3 3

4 4

0 0 ;

0 0 ;

0 0 .

T

T

T

l

l

l



 

 

OC

OC

OC

   (8) 

Here we remind that in our assumptions 4 3OC OC , or, that is the same, l4=l3. Then the vector of 

the center of mass of the subsystem of bodies ##1, 3, and 4 (i.e. without the damper-body) is: 

31 4
1 3 4 ,sub

sub sub sub

mm m

m m m
     R OC OC OC     (9) 

where im  is the mass of the body #i, and 1 3 4subm m m m   . Additionally, we remind that the 

damper-body is placed in the position of the center of mass of subsystem of bodies ##1, 3, and 4 

(i.e. in the position subR ). Therefore, the complete system center of mass coincides with the center 

of mass of the subsystem (9): 

   2 2 .c sub sub sub sub subm m m m   R R R R   (10) 

This fact also confirms the coincidence of the center of mass of complete system with the center of 

mass of the subsystem of bodies ##1, 3 and 4, and with the center of mass of the damper-body. 

 Now we can calculate the vectors of centers of mass of bodies relative to the center of mass 

of complete nanosatellite, taking into account the parallelism of the axes CXYZ and С1x1y1z1: 

1 1 ;c R OC R     (11) 

3 3 ;c R OC R    (12) 

4 4 ;c R OC R     (13) 

The linear velocities of the bodies’ centers of mass, which arising due to the angular motion of the 
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nanosatellite around the common center of mass, are fully defined by the angular velocity of the 

main body:  

1 .i i V ω R    (14) 

Now let us introduce the absolute angular velocities of the bodies in their own axes. The angular 

velocities of the main body in Сx1y1z1 and the damper-body in Сx2y2z2 are: 

1

1 1

1

;

p

q

r

 
 


 
  

ω   

2

2 2

2

.

p

q

r

 
 


 
  

ω    (15) 

The relative angular velocity of the movable unit in its coordinates frame is: 

 3 , 0, 0 .
T

r ω      (16) 

Then the absolute angular velocity of the movable unit is: 

3 31 1 3.r T
ω δ ω ω    (17) 

The relative angular velocity of the rotor in its own connected coordinates frame is: 

 4 0, 0, .
T

r ω      (18) 

Then the absolute angular velocity of the movable unit is: 

4 43 3 4.r T
ω δ ω ω       (19) 

The torques of viscous friction depend on the relative motion and can be written as follows: 

 

 

1

1 2

1

2 1

;

;

b

d









    

    

M ω Θ Β ω

M ω Β Θ ω
     (20) 

where   - is the coefficient of the viscose friction, Θ  - is the transition matrix from the orbital 

coordinate frame CXYZ to the С1x1y1z1 coordinate system, Β  - is the transition matrix from the 

orbital coordinate frame to the С2x2y2z2 coordinate system.  

 To describe the attitude of bodies (the main body and the damper-body), we will use the 

“directional cosines” of the unit vectors  , ,n re e e of axes of the orbital coordinates system 

CXYZ (fig.3) in corresponded connected coordinates systems of bodies (С1x1y1z1 and C2x2y2z2). 

Then the components of the unit vectors in the connected systems С1x1y1z1 and C2x2y2z2 have the 

form: 

 

 

 

1 2 3

1 2 3

1 2 3

, , ;

, , ;

, , ;

T

i i i i

T

ni i i i

T

ri i i i

   

  

  







e

e

e

   (21) 

where the index i=1, 2 indicates the bodies numbers. 
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The matrixes Θ  and Β  -in terms of directional cosines will have the following structure: 

11 11 11 21 21 21

12 12 12 22 22 22

13 13 13 23 23 23

, .

     

     

     

   
   

 
   
      

Θ Β     (22) 

The gravitational torques acting on the on the damper-body can be written in their own connected 

frames as follows: 

        2 2

0 2 2 2 0 23 3 0,0,1 0,0,1 .
T T

gd r r      M e I e Β I Β   (23) 

The gravitational torque acting on the subsystem (excluding the damper) around the common 

center of mass can be calculated as the sum of the corresponding parts. Here it is needed to take 

into account the terms from the difference of components of central tensors of inertia of bodies 

calculated in their own frames of coordinates, and, additionally, from a gravitational dumbbell, 

formed by the distant between centers of mass of the main body (C1) and the movable unit with the 

rotor (C3≡C4): 

             2

0 1 1 1 31 13 1 3 13 1 41 14 1 4 14 1 1 13 ,gb r r r r r r r r               M e I e e I e e I e e Je   (24) 

where  

   
2 2 2 2

1 1 3 4 3 1 1 3 4 3diag ; ; 0 .m m m m m m     
 

J R R R R   (25) 

The tensor J represents the inertia tensor of the indicated gravitational dumbbell; and the scalar 

value 0  is the angular velocity of the orbital coordinate system (the angular velocity of the orbital 

motion around the Earth along circle orbit). 

Now we should add the kinematical expressions taking into account the orbital rotation. We will 

use the well-known expressions to the unit vectors of the orbital system [e.g., 11]: 

0

0

;

;

;

ri
ri i i

ni
ni i

i
i i ri

d

dt

d

dt

d

dt











  




 



  


e
e ω e

e
e ω

e
e ω e

   (26) 

where i=1, 2. 

So, the equations (1), (26) completely describe the angular motion of our mechanical system at 

the consideration of angles and angular velocities  , , ,     as controlling parameters described 

by control laws. In our research, we synthesized the following control laws: 

1 ;pk p k        (27) 

 1 ;r        (28) 
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where ,pk k  are the feedback gain constants, Ω – is the predefined constant of the value of the 

angular velocity of the rotor, and H(∙) – is the Heaviside function: 

 
1, 0

0, 0







  


     (29) 

The logic of the control laws (27) and (28) is based on the natural properties of the dynamics. 

To explain this, we can remind the conservation of angular momentum law: the complete angular 

momentum of the closed torque-free mechanical system remains constant, but the system elements 

can exchange angular momentum parts between themselves. Therefore, in our idea, to minimize 

the transversal angular velocity p of the main body, we should to increase the angular velocity   

of the movable unit (proportionally to current value of the velocity p), then the main body 

translates the corresponded angular momentum to the movable unit (27). The law (28) uses the 

pulse activation of the rotor constant angular velocity to create the gyroscopic torque to combine 

the axes of the main body and the movable unit. As it follows from the form of the law (28), the 

rotor will turn on when the longitudinal angular velocity r1 and the angle α are simultaneously 

nonzero. At the action of the external gravitational torques and internal dissipation, the indicated 

natural tendencies of the angular momentum exchange between the system bodies will minimize 

the angular velocities of all bodies.  

To show the stability of the considered controlled motion it is possible to use the approach with 

the Lyapunov function. For these purposes, let us introduce the relative (with respect to the orbital 

coordinates frame) angular velocities of bodies (i=1, 2): 

0 .i i ni ω ω e    (30) 

To build the Lyapunov functions we can use the Beletsky integral [11]: 

2 2 2 2

1 1 0 1 1 0 1 1 2 2 2 0 2 2 2 0 2 2 2

1
V 3 3

2
s r s r n s n r r n n          ω I ω e I e e I e ω I ω e I e e I e  (31) 

where 1 3 4s    I I I I J – is the summarized inertia tensor of the satellite with the immovable unit 

and the rotor  0   . The form (31) describes the motion “first integral” of a conservative 

mechanical system with two rigid bodies without the internal interaction: the first rigid body is 

formed by the subsystem of the main body (#1), the unit (#3), the rotor (#4) without any relative 

motions of these elements, and the second rigid body is the damper-body (#2). So, without the 

internal friction we will have the conservative case, and the complete energy of the system in the 

central gravitational field (31) will be preserved. However, the internal friction between the main 

body and the damper-body will decrease the complete energy due to dissipation properties, but we 

still can use the form (31) in the role of the Lyapunov function as the natural energy expression. As 
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can we see from (31), the function V is the scalar function depended on the set of variables 

 
(1,2), (1,2,3)

, , , ,i i i ij ij i j
p q r  

 
. The following geometrical expressions are obvious: 

2 2 2

3 1 2

2 2 2

2 1 3

1 ;

1 .

i i i

i i i

  

  

   


  

     (32) 

The substitution of expressions (32) in the function (31) allows to exclude from the 

consideration the variables  3 2,i i  , and then we will have the function V depended from 

fourteen variables: 

 1 1 1 2 2 2 11 13 21 23 11 12 21 22V V , , , , , , , , , , , , , .p q r p q r            (33) 

Taking into account the diagonal form of tensors 1 3 4, , , , ,sI I I I J  it is possible to conclude that the 

function (33) represents the quadratic form. For example, the partial dependencies of terms of L, 

from the corresponded variables are depicted at the fig.4. From the fig.4 we see the surfaces of 

growing paraboloids. By subtracting the constant  V 0  we obtain the positive-definite quadratic 

form, which can be used in the role of the classical Lyapunov function: 

   1 1 1 2 2 2 11 13 21 23 11 12 21 22L , , , , , , , , , , , , , V V .p q r p q r           0  (34) 

Moreover, in the gravitational equilibrium position the variables 

 1 1 1 2 2 2 11 13 21 23 11 12 21 22, , , , , , , , , , , , ,p q r p q r          are equal to zero values, and, therefore, all of 

them also can be considered as small deviations in the classical Lyapunov stability theory. 

The pure analytical investigation of the Lyapunov function (34) derivative is quite 

problematic, but we can use the numerical modeling by numerical integrating the motion equations. 

In the presence of the internal friction with the damper and also at the action of control torques (27) 

and (28), the conservativeness of the system will be destroyed and the Beletsky integral will not 

save its constant value. Nevertheless, we can still use the Lyapunov function in the form (34) to 

study the stability of the motion mode that brings the nanosatellite to the gravitational equilibrium 

position. The numerical modeling results are presented at the fig.14. 
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         (a)       (b) 

        
         (c)       (d) 

Figure 4 – Parabolic surfaces of terms of the function (33): 

(a) the term 2

0 1 1

3

2
r s r e I e ;    (b) the term  2

0 1 1

1

2
n s n e I e ;  

(c) the term 2

0 2 2 2

3

2
r r e I e ;    (d) the term  2

0 2 2 2

1

2
n n e I e . 

 

At the fig.14 two cases of motion are presented: the first case – is the motion of the 

nanosatellite with the movability of the internal damper, but at the fixation of the unit and the rotor 

(we can call this as the “rigid bodies” case); the second case corresponds to the controlled motion 

of the system. As can we see from the obtained results (fig.14), the both cases are characterized by 

the decreasing Lyapunov function with the negative derivative, and, therefore, the both regimes are 

stable. However, the case with the control has a significantly stronger and faster exponential 

convergence to zero in comparison with the “rigid bodies” case – this confirms the effectiveness of 

the synthesized control laws (27) and (28). 
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In the practical sense we can note, that to implement the control laws (27) and (28), we need to 

know the current values of the angular velocity of the main body and the angle of the movable unit 

deflection. To find out these parameters on board of the nanosatellite, it is possible to use the 

angular velocity sensors, and the α-angle sensor (or the integrator the of α(t) value from (27)). All 

indicated sensors can be chosen from the broad spectrum of simple small microelectromechanical 

systems, e.g. MEMS gyroscopes and linear/angular sensors [40-42].  

Now on the base of equations (1), (26) and laws (27), (28) we have the complete mathematical 

model to simulate the system attitude dynamics. As it is known, to the numerical simulation 

realization we need to integrate numerically the differential equations with the help of standard 

numerical methods (the Runge–Kutta family of methods, the Rosenbrock method, etc.), which use 

the standard form of the equations with the right-hand sides resolved with respect to higher 

derivatives. In this connection, we also built this standard form of the differential equations. In our 

case, the corresponding standard form of these equations is cumbersome, and it does not presented 

here in the paper. The analytical standard form of the equations was automatically built in the 

mathematical package “Maple”. This standard form has no scientific value and it is only used for 

numerical calculations by the Rosenbrock integration method in the “Maple” software.  

The corresponded numerical simulation results are presented in the next section of the paper. To 

this simulation, we used initial conditions and inertia-mass parameters from tables 1 and 2. 

4. RESULTS 

 To show the workability of the constructed damping scheme, arising the final gravitational 

equilibrium position, and the effectiveness of the synthesized control laws we will provide the 

numerical investigation of two cases of the nanosatellite attitude dynamics on the base of equations 

(1), (26) and laws (27), (28). 

The first case corresponds to the fixed movable unit with the immovable rotor – this was 

above called as the “rigid bodies” case. Simulation results for the first case are presented at figures 

5-12 with liter (a). 
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        (a)       (b) 

Figure 5 – Time-evolutions of the angular velocity components  1p t  (in red),  1q t  (in blue), 

 1r t  (in green) of the main body: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 

 

 

 

 

        (a)       (b) 

Figure 6 – Time-evolutions of the angular velocity components  2p t  (in red),  2q t  (in blue), 

 2r t  (in green) of the damper: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 
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        (a)       (b) 

Figure 7 – The time-evolution of the directional cosines  11 t  (red),  12 t  (blue),  13 t  (green) 

of the main body:  

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 

 

 

 

 

        (a)       (b) 

Figure 8 – The time-evolution of the directional cosines  11 t  (red),  12 t  (blue),  13 t  (green) 

of the main body: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 
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        (a)       (b) 

Figure 9 – The time-evolution of the directional cosines  11 t  (red),  12 t  (blue),  13 t  (green) 

of the main body: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 

 

 

 

 

        (a)       (b) 

Figure 10 – The time-evolution of the directional cosines  21 t  (red),  22 t  (blue),  23 t  

(green) of the damper body: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 
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        (a)       (b) 

Figure 11 – The time-evolution of the directional cosines  21 t  (red),  22 t  (blue),  23 t  

(green) of the damper body: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 

 

 

 

 

        (a)       (b) 

Figure 12 – The time-evolution of the directional cosines  21 t  (red),  22 t  (blue),  23 t  

(green) of the damper body: 

(a) – the “rigid bodies” case; (b) – the case with the control (27) and (28) 
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        (a)       (b) 

Figure 13 – The time-evolution in the case with the control (27) and (28): 

(а) – the rotor angular velocity  t ; (b) – the deflection angle of the movable unit  t  

 

 

 

Figure 14 – The Lyapunov function time-evolution in the “rigid bodies” case (red) and in the case  

with the control (27) and (28) (blue)  
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First of all, as can we see from fig.5-a and fig.14, the “rigid bodies” scheme achieved the 

stable gravitational equilibrium after 3∙106 seconds, when residual values of the components p1 and 

r1 of the angular velocity of the main body will become equal to ~10-4 rad/s, when the component 

q1 will reach the orbital angular velocity value  1 0q    and when the direction cosines will 

confirm the coincidence of the axes of the connected and the orbital coordinates frames. In 

addition, the gravitational equilibrium obtainment can be indicated by the Lyapunov function 

values, which will be close to zero (fig.14, red line) due to zeroing out small deviations. At the 

fig.6-a – fig.13-a the plotting time interval is decreased to show details of motion phases with 

active dynamics.  

So, we can conclude that in this case of the modeling, the stable final attitude position of the 

nanosatellite will be obtained after 3∙106 seconds. 

The second case describes the motion of the nanosatellite with the movability of the unit 

and the rotor with control laws (27) and (28). Simulation results are shown in figures 5-13 with 

liter (b). The time-history of the movable unit motion and the piecewise continuous rotation of the 

rotor presented at fig.13. All numerical results demonstrate the steady process of the gradual 

transition to the gravitational stable position of the nanosatellite on the orbit. 

In this case, as we can see from the numerical modelling, the gravitational stabilization is 

obtained after 3∙105 seconds. This allows to confirm, that the controlled stabilization is fulfilling 

most quickly in comparison with the uncontrolled case of “rigid bodies”.  

We see practically tenfold increase in speed of the stabilization process (3∙105 vs 3∙106 

seconds) – this is the evident confirmation of the effectiveness of the synthesized control laws (27) 

and (28).  
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 1 

TABLE 1.  INITIAL CONDITIONS 2 

Parameter Unit Value 

1p  /rad s  0.0015 

1q  /rad s  0.002 

1r  /rad s  -0.004 

2p  /rad s  0.002 

2q  /rad s  0.001 

2r  /rad s  0.0015 

1 1   rad 0.015 

2 2   rad 0.01 

3 3   rad 0.02 

  /rad s  0 

  rad 0 

0  /rad s  0.0012 

3 

TABLE 2.  INERTIAL-MASS PARAMETERS 4 

Parameter Unit Value 

1A  2kg m  0.0045 

1B  2kg m  0.0055 

1C  2kg m  0.0035 

2A  2kg m  0.003 

2B  2kg m  0.004 

2C  2kg m  0.0015 

3A  2kg m  0.0025 

3B  2kg m  0.0035 

3C  2kg m  0.0015 

4 4A B  2kg m  0.0002 

4C  2kg m  0.0004 

1m  kg  2 

2m  kg  0.5 

3m  kg  1 

4m  kg  0.04 

1l  m  0.1 

3l  m  0.04 

4l  m  0.04 

k   s-1 0.008 

pk  [1] -0.7 

Ω s-1 3.14 

ν N∙m∙s 0.00001 

 5 



23 

 

DISCUSSION 

As we can see, the main goal of the research is reached. In the controlled motion with laws 

(27) and (28) the nanosatellite proceeds into the gravitational stabilization position more effective 

in comparison with the uncontrolled passive case (about ten times). Nonetheless, here it is worth to 

discuss some aspects of the satellites stabilization tasks, and some other connected questions.  

First of all, we should note, that some alternative schemes of the spatial position 

stabilizations can be used in the practice of the space missions; and different types of the dampers 

can be selected to achieve the predefined attitude. In simplest cases, it is possible to consider the 

attitude dynamics of the satellites as the torque-free dynamics, and then the simplest form of the 

damper will quite useful. For example, it is possible to indicate the simple spherical cavities filled 

with liquids (a liquid fuel). Then these cavities will play role of the dampers due to creation of the 

internal friction, which can smoothly stop the attitude motion or undesirable forms of angular 

motion (e.g., a parasitic nutation) [12]. Also in such cases, the simple oscillatory systems with 

viscous friction are applied [13, 14]. The oscillating masses with damping in spacecraft with 

partially filled cavities with liquid also are one of type of effective dampers [15, 16]. In some 

missions, it will be enough to achieve the spatial orientation along the forces lines of the 

geomagnetic field, and then the magnetic dampers are quite appropriate in theirs different 

constructional forms and at a diversity of the control laws [17-22]. Moreover, the magnetic 

dampers also used in the spacecraft missions with gravity gradient stabilization [23, 24]. Some 

alternative schemes of damping are possible, including the fluid rings or pendulum dampers [25-

27]. It is worth to indicate the other control methods, which can be used to the attitude motion 

control under the presence of perturbations [27-30]. In addition, we should underline effective 

approaches of spacecraft stabilization and control, based on active schemes of gravity-gradient 

stabilization [31, 32], on integrated magnetic and impulsive actuators [33-37], on schemes 

specialized in concrete modes [38] or adapted to new platforms of satellites [39].  

All indicated above schemes of attitude stabilization are useful and each of them can be 

most appropriate to solve the practical tasks of a concrete space mission. With directly regard to 

gravitational dampers, it can be noted that the classical variant of the damper represents the 

spherically symmetrical rigid body with the corresponding spherical inertia tensor – this classical 

type [1-5], as well as the simple cavities filled with viscous liquids [12], will fulfill the process of 

damping the attitude oscillations around the stable spatial position. In the considered research the 

generalized scheme of the gravitational damper was considered, when the damper-body has three-

axial inertia tensor. The using damper-body with the three-axial inertia tensor significantly 
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complicates the mathematical model and requires taking into account the relative position of both 

bodies (the main body and the damper-body) with respect to the gravity gradient vector. However, 

in this generalized scheme, it is obvious that we will have a gain in the efficiency of the damping 

process.  

Thus, we invite readers and researchers to get involved in the research of the attitude 

dynamics and control of the nanosatellites with the movable elements, and into synthesis and 

comparing models and efficiency of the classical and the generalized schemes of the gravitational 

damper. 

CONCLUSION 

As we can see, the main goal of the research was reached. In the controlled motion with the 

synthesized control laws the nanosatellite proceeds into the gravitational stabilization position more 

effective in comparison with the uncontrolled passive case. The main feature here is the use of the 

controlled movability of the constructional elements of the nanosatellite. When we allow the 

relative motion of the movable parts, then the dynamics goes into more complex but more effective 

process, where the gravity and the gyroscopic torque from the controlled deflecting rotor will help 

each other - this allows us to develop new control laws for the attitude dynamics and attitude 

positioning of nanosatellites of similar constructions. The ten times increasing in the efficiency of 

the stabilizing process take place at the control of movable parts of the nanosatellite.  
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