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The attitude dynamics of a variable mass spacecraft is considered. The variability of mass-

inertia parameters in time is associated with operation of a jet-engine, which forms an interorbital 

impulse. The thrust of the jet-engine is directed along the longitudinal spacecraft axis, which 

fulfills the nutational-precessional motion relative to a planned direction in the inertial space. 

Therefore, to increase an accuracy of the thrust impulse formation during the jet-rocket engine 

work, and to reduce dispersion of the thrust due to the precessional rotation, it is needed to 

synthesize the motion regime with monotonously decreasing nutation angle. Such regimes allow 

to obtain a spiral twisting of the longitudinal axis to the predefined target direction, when the thrust 

will be focusing to target direction. To analyze and to synthesize this nutational-precessional 

motion properties, the curvature of the corresponded phase trajectories is evaluated in an angular 

phase space. The phase trajectory curvature evaluation gives an opportunity to synthesize the 

appropriate time-dependencies of inertia-mass parameters of spacecraft, which allows to increase 

the accuracy of the thrust impulse formation during operation of the jet-rocket engine. The 

proposed appropriate technique for positive phase trajectory synthesis is based on the previously 

developed method of curvature evaluation. 
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1. Introduction 
In this paper, the attitude dynamics of variable 

mass spacecraft (SC) is analyzed and synthesized 

during the operation of solid propellant jet-

engines. This theme belongs to a very reach 

scientific area of the angular motion dynamics of 

a rigid body, which includes many dynamical 

aspects associated with important fundamental 

results and practical applications in the framework 

of space flight mechanics of spacecraft and 

satellites. The many different tasks of the satellites 

motion stability analysis were considered, for 

example, in [1–13]. The important regimes of 

permanent rotations, regular precessions, and 

related aspects, including the modified classical 

cases of rigid bodies dynamics with additional 

perturbations were studied in [2,10,13–17]. 

Separately, we should indicate classical and 

modern questions and results in the field of 

variable mass bodies dynamics, which are 

collected and discussed in [18–32]. First of all, 

among these results, the main mathematical model 

of the attitude motion of variable mass bodies is 

constructed on the base of classical works [19–

21,23] and on results obtained in [25–27], which 

include the qualitative method of the angular 

motion regimes synthesis. Despite the wide range 

of formulations of the solved problems, it is worth 

to note that the problem of the variable mass 

systems is still relevant for considerations in new 

statements [33,34]. And, moreover, different 

types of the change of the mass-inertia parameters 

are investigated in the framework of a spacecraft 

constructions transformations [32], or at the 

selection of different laws of jet-engines 

thrust [28]. 

In the development of the theme of variable 

structure systems motion, it is important to note in 

advance, that as the result of this paper will be 

related to the conditions of formulation allowing 

realization of the precessional motion modes with 

natural decreasing the nutation — such modes are 

advantageous and preferred in some cases of 

spacecraft attitude dynamics. E.g., these 

conditions are useful for practical applications in 

the area of the space missions with interorbital 

maneuvers, where the formation of the interorbital 

impulse can be passively refined in its direction 
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during engine operation only due to the inertia-

mass parameters changing at which the decreasing 

of the nutation angle is fulfilling (we need to 

synthesize and to implement such laws of change 

in the moments of inertia, which provide the 

natural passive decreasing of the nutation without 

any external and reactive torques). Such missions 

use the simplest type of the gyroscopic attitude 

stabilization with the help of spin-up of the 

spacecraft around its own axis. The spacecraft has 

the precessional motion with passively focusing 

the direction of the engine thrust, which is directed 

along the rotation axis. 

To underline the novelty and the importance 

of the results obtained, we also can remind for 

comparison the well-known effect of damping of 

transverse (nutational) vibrations by short jet-

force-impulses from orthogonal jet-engines, 

which decrease the nutation in an active way [22]. 

In [22] a possible alignment of the gyroscope axes 

is described in cases of the constant mass 

gyroscope without any consideration of the mass 

changing at the jet-engines operation. So, the 

dynamical task of the focusing and correcting 

gyroscope axis presented in this research is known 

and still relevant, especially if it can be realized by 

the passive way due to the right choice of the laws 

of the mass-inertia parameters changing. 

 

2. The mathematical model of the angular 

motion of variable mass rigid bodies 

Let us write the main dynamical equations 

with the help of the angular momentum change 

theorem. We can use the following coordinate 

systems (fig. 1). 

The frame OXYZ  is a moving coordinates 

system with axes that are parallel to the inertial 

axes P . The point O coincides with the initial 

position of the center of mass of the system at the 

initial time-moment. 

In the moving axes OXYZ  the vector 

equation can be written in the form, obtained in 

the classical treatise [20]: 

 

 

0
0 0

0

1

,

e r

n

C

dK
M M

dt

dm
Mw

dt


 



   


  

    
 (1) 

where 0K  — the angular momentum vector; 

0

eM  — the external torques vector; 0

rM  — the 

reactive jet-forces torques vector; 

 , ,x y z     — the radius vector of the body 

point with the index ν;  C C t   — the center 

of mass radius vector at the current time; 

 m m t   — the mass of the body point with 

index ν;  , ,p q r   — the angular velocity 

vector;    M М t m t


   — the body mass at 

the current time; 
0w  — the acceleration of the 

point O which moves in the inertial space (this 

point is selected per pole). 

 
Fig. 1. Coordinate systems 

Here we must note, that the equation (1) 

represents the fundamental result, obtained in the 

framework of the mechanics of the body of 

variable mass by Arkadiy Alexandrovich 

Kosmodem’ianskii [20] on the base of the well 

known classical theory of a variable mass point 

dynamics by Ivan Vsevolodovich 

Meshcherskiy [19]. All subsequent mathematical 

deductions are fullfiled on the grounds of the 

equation (1), which defines the law (“the theorem”) 

of the changing an angular momentum of the 

system of variable mass relative to a moving 

coordinates frame, which axes are always parallel 

to axes of an inertial coordinates system. 

Let us introduce the axes system Oxyz, that is 

invariably connected to the moving body and 

choose the point O, in which the center of mass is 

located at the initial moment of time, as the 

reference pole. Then 

 0 0
0,

dK dK
K

dt dt
    (2) 

where d dt  is the local derivative with respect to 

the Oxyz axes. 

Substituting (2) into (1) gives 
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 

0
0 0 0

0

1

.

e r

n

C

dK
K M M

dt

dm
Mw

dt


 





   


    

    
 (3) 

Let us rewrite (3) in a more convenient form 

in projections on axes Oxyz (further we omit the 

designation “~” in the notation d dt ): 

 
 0

0

1

0 0 0.

n

e r

C

dK dm
K

dt dt

M M Mw


 



   





 
      

 

   


 (4) 

In the body-fixed frame Oxyz we have the 

following form of the angular momentum and the 

center of mass vector: 

 0 0
ˆ ; , ,

T

C C C CK I x y z    ,  (5) 

where 0Î  is the tensor of inertia relative to the 

point O. 

The local derivative takes the shape (the 

symbol “dot” indicates a time derivative): 

  0
0 0 0
ˆ ˆ ˆ .

dK d
I I I

dt dt
         (6) 

Let us write down the double vector product 

 
dm

dt


      from (4): 

 
 

 2 .

dm

dt

m m


 

    

  

   

  

  

 (7) 

The scalar components of the vector result (7) 

are as follows: 

 

 

 

 

2 2 2

2 2 2 2

2 2 2

;

m p x y z

dm
m q x y z

dt

m r x y z

   


    

   



  
 
   
 
  
 

 (8) 

  
 

dm

dt


    

  

 

 

 

 

2

2

2

.

m px qx y rx z

m px y qy rz y

m px z qy z rz

     

     

     

  
 
   
 
  
 

  (9) 

 

Finally, the vector (7) can be written as 

follows: 

  
 2dm dm

dt dt

 
       

  

 

 

 

2 2

2 2

2 2

.

y z p x y q x z r

m x z q x y p z y r

x z p y z qx y r

 
   

      

   
 

  
     
                 

      
  

(10) 

According to its definition, the inertia tensor 

component IXX corresponds to the value: 

  2 2

1

.
n

XXI m y z  
 

   (11) 

After differentiating we have: 

 

 

   

2 2

1

2 2 2 2

1 1

.

n

XX

n n

d
I m y z

dt

dm d
y z m y z

dt dt

  



    

 



 

  

   



 
 (12) 

Since the body is absolutely rigid 

 : const, const, constx y z      , then 

 2 2 0
d

y z
dt

    and the expression (12) takes the 

form: 

  2 2

1

n

XX

dm
I y z

dt


 

 

   (13) 

and similar reasoning is done for all the inertia 

tensor components (
YYI , 

ZZI , 
XYI , 

XZI , 
YZI ). 

Taking into account (11), we rewrite (10): 

 2dm dm

dt dt

 
         

 
0
ˆ .

XX XY XZ

XY YY YZ

XZ YZ ZZ

I I I p

I I I q I

I I I r



   
  

      
     

 (14) 

Substituting (6) and (14) in the equation (4), 

we obtain: 

0 0 0 0

0 0 0

ˆ ˆ ˆ

e r

C

I I I K

M M Mw

   



     
  

   

 

or 

 
0 0

0 0 0

ˆ

.e r

C

I K

M M Mw

 



  

   
 (15) 

Now we should rewrite the vector 
0C Mw  . To 

do this, we can write the theorem on the center of 

mass motion for a variable mass body: 

 
   e e

c rMw R  , (16) 

where 
 e

R  — the external forces vector; 
r  — 

the reactive forces vector. 

The relationship between the accelerations 
 e

cw  and 
0w  is the following (   is the angular 

acceleration): 
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 

0 ,
e

C C Cw w            (17) 

After substituting (17) into (16) we have: 

    
0 .

e

C C rM w R            (18) 

From (18) we can write: 

 

 
0

.

e

r

C C

Mw R

M M    

  

    
 (19) 

Now the equation (15) takes the form: 

  
0 0 0 0
ˆ e r

e

C r C C

I K M M

R M M

 

     

    

       
 

or 

 
 

0 0

0 0

ˆ

.

ee r

C

C r C C

C C

I K

M M R

M

M

 



   

   

  

    

     

   

 (20) 

Let us rearrange the terms in (20): 

 

 

 
    

0

0

0 0

ˆ

.

C C

C C

ee r

C C r

I M

K M

M R M

   

    

 

   

      

     

 (21) 

Notice, that 

 
  0 ,
ee e

C СM R M    (22) 

  0 ,r r

C r СM M    (23) 

where С — the point at which the body center of 

mass is located at the current time. 

Let us write componentwise the term 

C CM    , projecting them on the body axis 

coordinate system: 

 C CM     
 

  2

, 1..3

,C ij Ci Cj
i j

p

M q I

r

    


 
       
 
 

 (24) 

where 

 
 

 

2 2

2 2

2 2

,

C C C C C C

C C C C C C

C C C C C C

M y z Mx y Mx z

I Mx y M x z My z

Mx z My z M x y

   
 

    
   
 

 

1 2 3, , ,C C C C C Cx y z      

and  

1, ;

0, .
ij

if i j

if i j



 


 

I  is formally the inertia tensor (relative to the 

point O) of the mass-point C, which is the center 

of mass of the body at the current time. 

Now we should rewrite the vector 

C CM       in projections on the body-

fixed frame: 

   ,C C C CM M                 (25) 

where 

 

 
2

1

2

2

2

3

.

C

C C C

C C C

C C C

p x pqy prz Q

pqx q y qrz Q

prx qry r z Q

   

    
   

      
      

  (26) 

The substituting (26) in (25) gives: 

  
 C CM           

 







2 2

2 2

2 2 .

C C C C C

C C C C C

C C C C C

prx qrx y r x z

k pqx q x y qrx z

p x y pqy pry z

   

   

  


 (27) 

We can note, that 

  
 

    

2 2

2 2 2 2 .

C C

C C C C

Mqr y z

qr M x y M x z

 

   
 (28) 

Using this technique, we rewrite (27) in the 

form: 

  
 

  .

C CM

I K

   

  

    

    
 (29) 

where K I    is formally the angular 

momentum (relative to the point O) of the mass-

point C (with the mass M), which is the body 

center of mass at the current time. 

Taking into account (22), (23), (24), (29) we 

can rewrite the equation (21): 

 
   

    

0 0

0 0

ˆ

.
ee r

C C r

I I K K

M R M

   

 

     

     

 (30) 

Let us present the following tensor and the vector 

as: 

   0
ˆ ˆ ,СI t I I   (31) 

 0 .СK K K   (32) 

Then, the equation (30) can be written in the form: 

  ˆ .e r

С С С СI t K M M       (33) 

The Equation (33) corresponds to the main 

law of the change of angular momentum of 

variable mass bodies. 

Formally, the law (33) can be considered as 

the form of the angular momentum change 

theorem presented in the moving coordinate 

system with the origin in the center of mass C (at 



5 

the current time) and with axes, which are parallel 

to the frame Oxyz connected to the body. Also we 

should note that the main pole O can move with 

any linear acceleration (since the center of mass C 

moves along the orbit), so the axes OXYZ  are not 

inertial in the common case. 

Here we should note that the rigid body center 

of mass with variable mass can change its own 

position relative to the rigid body due to change of 

masses of its different points. So, even if the body 

is stationary in inertial space, its center of mass 

can move due to a change of mass of its points (for 

example, when a stationary rod burns, the center 

of mass formally moves towards unburned 

points). In other words, the center of mass is not a 

fixed point in the composition of a rigid body of 

variable mass.  

In this regard, we must know the specific laws 

of the inertia-mass geometry time-dependencies 

of a body of variable mass. Only then we can 

calculate all of the rigid body inertia-mass 

parameters, like the set of constants and time-

functions, written for the rigid body in the body-

fixed frame Oxyz: 

           0
ˆ , , , , .C C Cset I t I t x t y t z t  (34) 

So, if we know the set (34), then we can 

directly use the form of the dynamical equations 

(30) or the form (33). In any case, the vector 

equation (33) was built in the framework of the 

consideration of all vector values in the principal 

body coordinates Oxyz; the form (33) corresponds 

to the formal rewriting of the main equation (30), 

obtained in Oxyz. 

The vector equation (33) demonstrates the 

main meaning of the law of the angular 

momentum change in the application to the 

consideration of the variable mass body: as we can 

see, the main sense is not differing from the case 

of the body of constant mass. 

The presented process of the equation (30) 

(or (33)) obtaining corresponds to the ideology, 

which was used in classical works [20,23]. Such 

detailed deduction of the equation (30) is 

presented by this paper, due to the importance and 

the non-obviousness of the final form, where the 

derivatives from the components of the inertia 

tensor  0Î t  (or  ˆ
СI t ) are absent.  

It should be noted that in works [20,23] a 

similar result has already been obtained for a more 

simple case, when a variable mass body has the 

principal axes variable inertia tensor and always 

(at any following time-moment) remains its form.  

Within present consideration the variable 

inertia tensor 0Î  can have any common form (in 

the presence of centrifugal moments of inertia); 

also the variable position of the center of mass 

relative to the body can be arbitrary and can 

arbitrary move inside the body (i.e. it can change 

its calculated coordinates relative to the body-

fixed frame due to the mass variability and, 

therefore, with any complex form of ).I  

 

3. The main applied task formulation 

Now, basing on the main equations (30) 

or (33) we can formulate the main conditions of 

our further research in the framework of applied 

problems of attitude dynamics of SC with variable 

inertia-mass parameters. 

Let us consider the SC with an operating jet-

engine, which forms an interorbital impulse in a 

“target direction”, which coincides in our case 

with axis OZ. 

 

 
Fig. 2. SC with a jet-engine 

The thrust of the operating jet-engine is 

directed along the longitudinal spacecraft axis Oz. 

Let us assume that the gyroscopic stabilization of 

the SC and its thrust vector is fulfilled by the fast 

rotation around the longitudinal axis Oz in the 

target direction OZ. In other words, we have the 

task stabilization of the SC precessional motion 

along targeted direction OZ, with changing 

inertia-mass parameters of the rigid body (SC). 

Therefore, to increase an accuracy of the 

thrust impulse formation during the jet-rocket 

engine work, and to reduce dispersion of the thrust 

due to the precessional rotation, it is needed to 

synthesize the motion regime with monotonously 

decreasing nutation angle. Such regimes allow to 

obtain a spiral twisting of the longitudinal axis to 

the predefined target direction, when the thrust 

will be focusing to target direction. 

https://www.multitran.com/m.exe?s=body+coordinates&l1=1&l2=2
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Let us consider the case of the SC motion, 

when body-fixed frame remain principal all the 

time, then the inertia tensor will have the diagonal 

form: 

       0 0 0 0
ˆ , , .I diag A t B t C t  (35) 

Let us assume, that the center of mass during 

the mass changing process always remains on the 

longitudinal axis Oz axis:  

   0,0, .
T

C Cz t   (36) 

Then (24) and (25) take the form: 

 
2 .

0

C C C C

C

M M

p qr

Mz q pr

            

 
 

  
 
 

 (37) 

In this conditions, the main dynamical 

equations can be written as follows: 

  

      

      

      

,

,

,

e r

Cx Cx

e r

Cy Cy

e r

Cz Cz

A t p C t B t qr M M

B t q A t C t pr M M

C t r B t A t pq M M

    


   


     (38) 

where 

       

       

   

2

0

2

0

0

;

;

.

C

C

A t A t M t z t

B t B t M t z t

C t C t

  


 




 

In addition, in our research we also will use 

the following assumptions. 

Assumption A1. The SC motion is considered 

on a finite time interval, where the values of 

decreasing physical quantities of masses and 

inertia moments remain always positive, that is, 

the problem physical statement correctness 

ensuring. 

Assumption A2. The spacecraft fulfils the 

angular motion with small values of the equatorial 

components of the angular velocity in comparison 

with the longitudinal component (that is usually 

realized in cases of the gyroscopic stabilization of 

the jet-engine thrust vector direction): 

 

2 2

1
p q

r



  (39) 

To describe the attitude motion we will use 

the Euler-type angles, corresponding to three 

rotations in the following order: 

     around around aroundx y z    . 

Such angles also called as the Krylov’s angles. 

The kinematical equations system has the form: 

   

 

sin cos ,

1
cos sin ,

cos

sin
cos sin .

cos

p q

p q

r p q

  

  



  



 

 

  

 (40) 

So, further we will investigate the SC angular 

motion basing on the dynamical equations (38), 

kinematical equations (40) considering the 

assumptions A1 and A2. 

 

4. The generalization of the method of phase 

trajectories forms analysis by their curvature 

evaluation 

To analyze the spacecraft dynamics, we will 

apply the “phase trajectory curvature method”, 

obtained and well-tried in works [26,27]. Here in 

this paper we consider the developing of this 

method to investigate the overaged forms of phase 

trajectories of the variable mass spacecraft angular 

dynamics in the cases of dynamical asymmetry 

    A t B t .  

As it was described earlier, to analyze the 

dynamics of a non-autonomous system the special 

method is very useful [26,27], which allows to 

evaluate the qualitative properties of phase 

trajectories, and even to synthesize their forms. 

According to this method [26,27] let us 

change the variables for describing the equatorial 

components of the angular velocity of SC: 

  
   

   

sin ,

cos .

p G t F t

q G t F t




 (41) 

The assumption 3 allows us to consider the 

angles   and   as small values   ,O   

 .O   Taking into account (41) and 

assumption A2, equations (40) take the form: 

    cos , sin , ,G Ф t G Ф t r      (42) 

where 

      .t F t t    (43) 

After substituting (41) in equations (38) we 

get: 
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 

 

  

2

2

2

cos

sin

cos sin ,

sin cos

sin cos ,

sin cos ,

yx

yx

z

r
F B C B F

AB

A C A F

MM
F F

A B

r
G G F F

AB

B A C A B

MM
F F

A B

B A M
r G F F

C C


   


   



 




  

    


 



   



 (44) 

Performing some algebraic transformations 

in (44), we get: 

  

  1

2

2

3

1
cos2 ,

2

1
sin 2 ,

2

1
sin 2 ,

2

F r F

G Gr F

r G F

  

 

 


  




 



 


 (45) 

where 

  

1 2 3

1 2 1 2

1

2 3

, , ;

, ,

;

, ;

cos sin ,

sin cos , .

e r e r

x Cx Cx y Cy Cy

e r

z Cz Cz

yx

yx z

B C A C A B

A A B B C C

M M M M M M

M M M

MM
F F

A B

MM M
F F

A B C

  

     



 

     

   

 

   

 

  

 (46) 

From spherical geometry the formula for a 

nutation angel   (the angle between axes OZ and 

Oz) follow cos cos cos .    We consider the 

small angles   and  , and then the nutation angle 

can be defined by the following approximated 

formula: 

  
2 2 2.     (47) 

So, taking into account the last comment, the 

phase plane  ,   can be considered as the phase 

space to effective describing the nutational-

precessional motion. The phase trajectory in this 

space completely characterizes motion of the 

longitudinal axis Oz (of an apex of the longitudinal 

axis).  

Therefore, our further research will be 

dedicated to the analysis of this planar phase space 

 ,  , and the main question here will be linked 

to the shapes of phase trajectories on this plane. 

On the indicated plane, the phase point will 

formally have its components of a phase velocity 

and a phase acceleration: 

 
, , , .V V W W         

 
Then with the help of expressions (42) the 

curvature of a phase trajectory (k) is evaluated as 

follows: 

     
322 2 2 2 2 .k G         (48) 

If the curvature magnitude increases, there 

will be a motion with a twisted spiral trajectory 

similar to a steady focal point (Fig. 5, case “a”) 

and if decreases — with an untwisted spiral. 

Therefore, to obtain the twisted spiral trajectory, 

we need to have the monotonously increasing 

curvature value, i.e.:  

20 0.k kk G G         (49) 

Therefore, to analyze the form of a phase 

trajectory on the plane  ,  , and to evaluate the 

condition (49) fulfilling, it is necessary to study a 

disposition of roots of the following function, 

which we will call as “the curvature function”: 
2( ) .P t G G    (50)  

The function (50) can be called as the 

“function of phase trajectories evolutions”. 

Different qualitative cases of behaviors of 

phase trajectories are possible depending on 

function P(t). In the first case (Fig. 3, case “a”) the 

function is always positive and has no zeros on 

whole considered interval of time  0,t T , and 

the phase trajectory is a twisting spiral. If the 

function P(t) has one zero root (Fig. 5, case “b”), 

then one change of quality of the dynamics takes 

place, and as the result we obtain the the Cornu’s 

spiral (also known as the “clothoid”) case “b”. If 

P(t) has many roots, then the phase trajectory has 

alternation of untwisted and twisted segments 

(Fig. 5, case “c”, “d”). 
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Fig. 3 The hodographs of the longitudinal SC 

axis (Oz) on the tangential plane {ψ-γ} 

 

Returning to the task of the spacecraft attitude 

dynamics synthesis and as we already sad, the 

variability of mass-inertia parameters in time 

related to the operation of a jet-engine, which 

forms an interorbital impulse. The thrust of the jet-

engine is directed along the longitudinal 

spacecraft axis Oz, which fulfills the nutational-

precessional motion relative to a planned direction 

in the inertial space OZ. Therefore, to increase an 

accuracy of the thrust impulse formation during 

the jet-rocket engine work, and to reduce 

dispersion of the thrust due to the precessional 

rotation, it is needed to synthesize the motion 

regime with monotonously decreasing nutation 

angle. Such regimes correspond to the spiral 

twisting of the longitudinal axis to the predefined 

target direction, when the thrust will be focusing 

to target direction. So, to obtain this spiral twisting 

dynamics we need to analyze the function (50), 

and to guarantee/synthesize its always positive 

value ( ) 0P t   (without roots on the whole time of 

the jet-engine operation) — this task is equivalent 

to the synthesis of the time-dependent mass-inertia 

parameters, which define the properties of the fuel 

internal allocation, the shapes of tanks and the 

laws of masses change in time. 

If we rewrite (50) then we obtain: 

  

 , , ,P P t F G r

F r d F r

G dt G

 

  
   

 

 (51) 

As we have already mentioned above, to 

achieve the desired dynamics, the function P must 

be positive over the entire considered time-

interval. 

The substitution of (45) into (51) gives the 

following explicit expression for the function P: 

  

 

 

 

 

   

1

2

3

2 2 2

2 2

1

3 1 2

2 cos 2 2

4

2

21
2

2

cos 2 sin 2

2 4 sin 2

4
cos 2 .

r F
P

G

r

r
G r

G

F F

r G r F

r F r
G

  

  


 

 

  

   

  
 

   

 
    
 

  

   


    



 (52) 

The form of evolution function (52) is 

difficult to analyze its analytical structure and to 

synthesize the positive inertia-mass parameters 

due to presence of oscillating terms with quite 

large frequencies. If we average the function P on 

the period of F, we can get more convenient form: 

    2
2 2 ,

4

zMr
P r

G C
  

 
    

 
 (53) 

where 

  

2 2 2 2

,

.

A B C C

B A A B

A B C C

B A A B

B A A B
A B C C

B A A B





   

 
     
 

 
    
 

 (54) 

Here the designation   means the averaging on 

F-period: 

 
2

0

.dF



    

Basing on the expression (53), we can further 

investigate the qualitative properties of the 

different cases of variable mass spacecraft attitude 

dynamics in its averaged form. 

5. The synthesis of the attitude dynamics  

Let us consider some cases of the spacecraft 

dynamics at different time-dependencies of 

inertia-mass parameters. 

Case 1. The dynamic symmetry of SC. 

First of all, we should consider the dynamics 

of the dynamically symmetrical spacecraft. In this 

case we always have equality of the equatorial 

inertia moments     0A t B t  . Then the 

following values are actual: 
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  2 1 , 2 .
C d C

A dt A
 

   
      

   
 (55) 

  2 2
.z

rС r
P M CA AC

G A A

 
   

 
 (56) 

The condition of positive values of the 

evolution function in this case is: 

  
2

0.z

r
rM CA AC

A
    (57) 

So, if the condition will be fulfilled, then the 

spacecraft will have the positive dynamics with 

twisted spiral for the apex of the longitudinal axis 

and for the vector of thrust. The considered case 

has the analytical description and it is fully 

consistent with the previous results [26,27]. 

Case 2. The absence of external and reactive 

torques. 

Now we consider the case of the angular 

motion of the SC with three-axial general inertia 

tensor (the dynamically asymmetrical rigid body). 

If there are no external and reactive moments in 

(53), then 

 

  

   

   

 

2

2

2

2

2
2

2

2 0
4

2 0 2
4

2 2
4

2 .
2

r
P r

G

r d
r

G dt

r d

G dt

r d

G dt

 

 

 



   

 
     

 

   

 

 (58) 

The condition 0P   will have the simple 

analytical form: 

   
2

2 0.
d

dt
    (59) 

So, for the positive dynamics it is enough to 

take such inertia-mass parameters, that correspond 

to the condition (59) — such parameters will 

guarantee the positive angular motion of SC, when 

the thrust vector (along Oz) spirally focuses along 

the target direction OZ by the natural way. 

6. Numerical Simulation results 

In the previous section, the analytical 

conditions were obtained for some important 

special cases, but in arbitrary common case, we 

cannot find the analytical evaluations. Then we 

need to carry out a direct numerical calculation of 

the evolution function form, to make sure that the 

parameters are positive (if it is confirmed that 

P(t)>0), or otherwise. 

Below comparative calculations for the 

full (52) and averaged (53) shapes of the evolution 

function are presented (blue lines correspond to 

the full shape, red lines — to averaged shape). 

These results show the fulfilment of our main idea: 

firstly, the full and the averaged results are close 

to each other, and, secondly, the averaged shape 

of the evolution function quite well defined the 

main tendencies of the phase trajectory 

("twisting", "unwinding" and “alternating” 

evolutions). 

Equation (53) shows, that the motion quality 

will change in cases when the multipliers signs are 

altering: 

 sign 2 1      and/or 

 sign 2 1zM
r

C
 

 
    

 
. 

Therefore, the complex cases of evolutions can be 

fulfilled due to final signs alternations. 

Let us provide the numerical modeling to 

show all features of the suggested method. 

Example 1. 

  14 0.7A t t  ,   13 0.65 ,B t t   

  5 0.1C t t  , 0x y zM M M   . 

In this case, the inertia moments satisfy the 

simple condition      A t B t C t   at 

 0,t T  . Nevertheless, the evolution function 

P(t) will be oscillating (fig.5, the blue line), that 

does not allow to understand the quality of the 

dynamics and to guarantee any predefined 

trajectories form. At the same time, the averaged 

form P  has the monotonously growing positive 

trend (fig.5, the red line), so we can predict the 

spiral twisting form of the corresponding averaged 

phase trajectory (fig.4, the red line). 

 

 
Fig. 4 The thrust vector hodograph evolution of 

Example 1 
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If we plot the phase trajectory without 

averaging, then we obtain its “direct” form (fig.4, 

the blue line), which corresponds to the general 

shape of the evolution function (52). It possible to 

conclude, that the direct form and the averaged 

form are close to each other. This similarity 

demonstrates the adequate applicability of the 

averaged evolution function (53) to qualitative 

analyzing of the phase trajectory form.  
 

 
Fig. 5 The curvature function P(t) 

of Example 2 

 

In addition, it is quite important to show the 

confirmation of our analytical predictions about 

the nutation angle behavior. The fig.6 contains the 

time-dependence of the nutation oscillation with 

decreasing amplitude (the blue line), and the 

averaged value of nutation (the red line). This 

behavior fully confirms the adequate effectiveness 

of the suggested method. 

 
Fig.6 The nutation angle 

Let us consider the next example, where we 

will take into account the constant external torque.  

Example 2. 

 0, 2 0 .x y zM M M C     

 

 

 

 

40000 2000 ,

44000 2200 ,

56000 2800 ,

A t t

B t t

C t t

 

 

 

 (60) 

 
Fig. 7 The thrust vector hodograph evolution of 

Example 2 

 
Fig. 8 The curvature function P(t)  

of Example 2 

 

The numerical results (fig. 7, 8) as it was 

menitoned previously demonstrate the quite 

correspondence of direct (the blue line) and 

averaged (the red line) forms of phase trajectories 

(fig. 7). The direct and averaged forms of the 

evolution function are depicted at the fig. 8, which 

additionally confirms the expediency of using the 

averaged form. It is needed to note, that in 
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comparison with the direct form of the phase 

trajectory, the averaged trajectory has some poor 

final position of the final twisting end — this, of 

course, means the accumulation of some 

numerical errors within the framework of using 

the method, but it does not affect the qualitative 

predictions of behavior in any way. We have, as 

the result, the adequate correspondence of direct 

and averaged qualitative forms of the phase 

trajectory. 

The following examples also will illustrate 

the applicability of the averaged forms of the 

evolution functions to predict the qualitative 

behavior of phase trajectories in more complicated 

conditions at the action of harmonic torques, and 

also at the increasing of magnitudes of torques. 

Example 3.  

0,x yM M      20 0 sin 2 .zM C t  

The inertia moments are described by (60). 

 
Fig. 9 The thrust vector hodograph evolution of 

Example 3 

 
Fig. 10 The curvature function P(t) 

of Example 3 

Example 4.  

0,x yM M      30 0 sin 2 .zM C t  

The inertia moments are described by (60). 

 
Fig. 11 The thrust vector hodograph evolution of 

Example 4 

 
Fig. 12 The curvature function P(t) 

of Example 4 

Example 5.  

 0.1 0 ,xM A  0,yM     30 0 sin 2 .zM C t  

The inertia moments are described by (60). 

 

 
Fig. 13 The thrust vector hodograph evolution of 

Example 5 
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Fig. 14 The curvature function P(t)  

of Example 5 

 

As multiple examples show, the adequate 

correspondence of the direct and the averaged 

trajectories is presented in aspects of qualitative 

properties of the motion. Indeed there are some 

relative deviations in forms, but they do not break 

the main idea and the suggested method of 

qualitative analysis/synthesis of the dynamical 

behavior of the spacecraft with variable inertia-

mass parameters in aspects of its nutational-

precessional motion.  

Examples 3 and 4 well demonstrate all the 

features of the method application at the action of 

oscillating external torques. We still obtain the 

adequate correspondence of direct and averaged 

results at the complication of the motion 

conditions.  

The final example 5 represents the most 

difficult type of analysis at the simultaneous 

action of both perturbing factors (oscillating 

torques and constant torques). On the one hand, 

we see a significant divergence of the curves 

(direct and averaged), however, on the other hand, 

these curves are completely equivalent in the 

topological sense: we see the same number and 

alternation order of twisted and untwisted zones.  

Thus, the presented examples confirm the 

possibility of using the generalized method of the 

analysis of averaged curvature of phase 

trajectories to predict and to synthesize the 

qualitative properties of regimes of variable mass 

spacecraft attitude dynamics.  

7. Conclusion 

In the paper, the attitude dynamics of the 

variable mass spacecraft was investigated with the 

help of the qualitative method for non-

autonomous dynamical systems analysis. This 

method was developed earlier [26, 27] for the case 

of motion of dynamically symmetrical rigid 

bodies with variable mass. In this paper, this 

method was generalized for the dynamically 

asymmetric spacecraft case. The generalized form 

of the method allowed to obtain the conditions for 

predefined motion modes of the variable mass 

spacecraft with an asymmetrical inertia-mass 

configuration.  

Some special examples are considered that 

illustrate the efficiency of the method and the 

topological equivalence between the original 

system and the averaged one. 

The phase trajectory curvature evaluation 

gives an opportunity to synthesize the appropriate 

time-dependencies of inertia-mass parameters of 

spacecraft, which allow to decrease the nutation 

by passive way and, therefore, to increase the 

accuracy of the spin-stabilization and the thrust 

impulse formation during operation of the jet-

rocket engine. 
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