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Abstract — The paper deals with the dynamics of rotational 

motion of a composite nanosatellite with a hybrid rotational 

motion stabilization system installed in it.. As an element of the 

passive stabilization system a gravity damper installed in the 

main body is used, an element of the active stabilization system 

is a movable module on a rail system. The movable module can 

move linearly relative to the carrier body by means of a rail 

system. Due to this linear displacement and dissipation of the 

gravitational damper, the position of the satellite moving in a 

circular orbit becomes gravitationally stable. In the article a 

mathematical model is constructed and numerical simulation 

of the rotational motion is carried out. 
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gravitational damper. 

1. INTRODUCTION 

At the present time, most modern nanosatellites are 
equipped with an orientation/stabilization system, which can 
be either active or passive. The development of passive 
orientation/stabilization systems is of great interest. They do 
not consume fuel during active control, but utilize natural 
properties of external force fields (gravitational, magnetic, 
aerodynamic) and gyroscopic properties. 

The passive system of nanosatellite rotational motion 
stabilization based on the action of the central gravitational 
field when the nanosatellite moves in a circular orbit is 
considered. To stabilize the position of the nanosatellite 
relative to the orbital coordinate system, it is necessary to 
reduce its angular velocity to the values of the angular 
velocity of the center of mass during its orbital motion. To 
realize this deceleration, the technique of dissipation of 
kinetic energy and external gravity can be applied. 

Let us consider the angular motion of a nanosatellite with 
one movable unit and with the "gravity damper" described in 
[1-3]. The gravity damper is installed in the main/carrier 
body. It is an internal rigid body in a spherical shell, which in 
turn is inside a spherical cavity of the main body, and the gap 
between the spherical shell and the spherical cavity is filled 
with a viscous fluid. The relative rotation of these spheres 
with the friction of the fluid generates a dissipative moment 
that slows down the angular motion. 

The tensor, of the gravitation damper considered in this 
paper is three-axis, in contrast to the classical damper 
scheme [4-6]. This form of the damper body is more 
effective in comparison with classical one [3]. 

In addition, to dissipate the kinetic energy can be applied 
other form and types of dampers [7-10].  

The working element of the active rotational motion 
stabilization system is the moving module and the rail system 

on which it is mounted (fig.1). With the help of the rail 
system, the mobile module can move along the axis parallel 
to the rail system.  

 

 

 

 

Fig. 1. The composite nanosatellite and its possible angular motion at 

the linear movability of one unit on the rail system. 



When moving the center of mass of the mobile module 
will change the geometry of the entire nanosatellite, which 
will qualitatively affect its dynamics. Knowing this it is 
possible to determine the type of law controlling the motion 
of the mobile module, to control the attitude dynamics of the 
entire nanosatellite. However, since the control torque is 
produced by the internal forces, we will not be able to 
change the angular momentum, but only be able to change 
the direction of the angular momentum vector relatively the 
satellite. By using active and passive rotational motion 
stabilization systems, faster stabilization of the nanosatellite 
rotational motion can be achieved. So, the mobile module 
acts on the carrier body, the carrier body in response acts 
even more strongly on the gravity damper, which interact 
with the external gravitational field. This common action of 
internal and external torques accelerate the process of the 
angular momentum unloading. 

2. MECANICAL MODEL 

Consider the mechanical model of the composite 
nanosatellite considered in this paper, shown in Fig. 1,2. 

 

(a) 

 

(b) 

Fig. 2. Schemes of the gravitational damper (a) and the rail system (b) 

Here are the coordinate frames used to calculate the total 
angular momentum of the composite nanosatellite: 

- CXYZ – orbital coordinate frame, its origin is the 
center of mass of the composite nanosatellite (the axis CZ is 
directed from the gravity center to the orbital position of the 
center of mass of the nanosatellite, the axis CY is orthogonal 
to the orbital plane and CX represents the third right axis); 

- С1x1y1z1 are the main coordinate frame of the main 
body with origin С1 located in the center of mass of the main 
body;  

- C2x2y2z2 are the main coordinate frame of the 
gravitational damper with origin С2 located in the center of 
mass of the gravitational damper; 

- С3x3y3z3 are the main coordinate frame of the 
movable unit with origin, С3 located in the center of mass of 
the movable unit on the rail system. 

3. MATHEMATICAL MODEL 

Let us use the angular momentum theorem to obtain the 
differential equations that describe the dynamics of the 
composite nanosatellite and all its parts. For this purpose, let 
us calculate the total angular momentum of the co-satellite 
containing the main body, the movable unit, and the mass 
point С2 located at the center of mass of the gravity damper 
(the effect of the damper rotation is transmitted only through 
liquid friction): 
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where 
iI – is the tensor of inertia of the body with number i, 

iω – is angular velocity of the corresponded body, 
iV  - is the 

linear velocity of the mass center of the body i, 
iR  - is the 

vector of the center of mass of the i-body relatively the 

center of mass of the complete nanosatellite C, 
im  - is the 

mass of the i-body. Linear velocities of centers of mass of 
bodies are: 
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y yV is the relative velocity of the linear 

displacement of the movable module along the CY axis. 
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where
im are masses of parts of composite nanosatellite, m is 

the total mass of the nanosatellite, 
iz  are distances between 

the centers of masses of bodies and bottom plane of the main 
body case, the value  y  is the linear displacement of the 

movable unit along the axis С3y3 

 The main central inertia tensors of bodies are: 

 [ , , ]i i i idiag A B CI ,  (4) 

where 
iA ,

iB ,
iC  are principal central moments of inertia of 

the corresponding bodies. Next, we calculate the absolute 
angular velocities of the parts of the composite nanosatellite 
in projections on their own connected coordinate frames 
Сixiyizi : 

  , ,
T

i i i ip q rω . (5) 



The torques of friction forces from the viscous fluid can 

be written as follows: 
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where   - is the coefficient of the viscose friction, Θ  - is 

the transition matrix from the orbital coordinate frame 

CXYZ to the С1x1y1z1 coordinate system, Β  - is the 

transition matrix from the orbital coordinate frame to the 

С3x3y3z3 coordinate system. Here 
bM  - is the torque acting 

on the main/carrier body from the side of the gravitational 

damper, 
dM  - is the torque acting on the gravitational 

damper from the side of the carrier body. 

To describe the position of bodies (the main body and 

the gravitational damper) instead of classical Euler angles 

we will pass to the use of "direction cosines"  , ,n re e e , 

which are unit vectors of axes of the orbital coordinates 

system CXYZ (fig.3) in corresponded connected 

coordinates systems of bodies (С1x1y1z1 and C3x3y3z3). Let 

us write the components of unit vectors in the connected 

coordinate frames С1x1y1z1 and C2x2y2z2: 
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where the index i=1, 2 indicates the main body and the 

damper body. The matrixes Θ  and Β  in terms of 

directional cosines will have the following structure: 
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The moments of the gravitational force acting on all bodies 

of the composite nanosatellite are written as follows: 
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where J – is the inertia tensor of a “gravity dumbbell” rigid 

body composed by the mass points C1, C2, C3: 
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As can be seen from the expression (10) inertia tensor J  is 

not diagonal. Moreover, its components depends on the 

linear displacement of the mobile module relative to the 

carrier body. This inertial configuration also affects the 

dynamics of rotational motion of the nanosatellite. 

 

The vector  00, ,0
T

ω  represents the angular 

velocity of the orbital coordinate system (the angular 

velocity of the orbital motion); in the frame CXYZ it has the 

following components. 

Then the equation of subsystem angular motion can be 

written as follows: 

1 b gb

d

dt
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A similar equation is used to describe the rotational 

dynamics of the graphite damper.: 
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where 
2 2 2K I ω  - is the angular momentum of the damper 

body about its center of mass C2. The equations (11) and 

(12) form the system of dynamical equations. 

As can we see, the dynamical equations depend on the 

linear displaicment y(t). Therefore, we must add the 

appropriate control law for the movable unit relative motion. 

To determine the type of control law of the mobile module 

motion, let's define the main conroling parameters. These 

parameters will be the angular velocity component p and the 

linear displacement of the module y as a feedback 

parameter. The angular velocity component p is chosen 

because it can initiate the rotational motion of the satellite, 

ans, also movable unit on rail will initiate the rotation with 

angular velosity p. This type of the control law can provide 

exponential dampeding of the unit motion. The control law 

in this case will have the following form: 

3 0( ),p yy k p k y y      (13) 

where pk  and yk  are control gain factors, 
0y  is a constant 

defined the final position of the movable module.  

To determine the spatial position and closure of the 

system of differential equations, we add kinematic 

expressions, taking into account orbital rotation. Let us write 

differential equations for unit vectors of the orbital frame 

[e.g., 11]: 
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where i=[1, 3]. 

So, the systems (11), (12), (13) and (14) fully describe 

the dynamics of the composite nanosatellite and all its parts. 

To prove the stability of the considered controlled 

motion, we can use the Lyapunov function approach. For 

this purpose, let us introduce relative (relative to the orbital 

coordinate system) angular parts of the nanosatellite(i=1, 3): 
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To build the Lyapunov functions we will use the Beletsky 

integral [2]: 
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Below we will carry out numerical simulation of 

dynamics and present numerical dependencies for all motion 

parameters. 

TABLE 1.  INITIAL CONDITIONS 

Parameter Unit Value 

1p  /rad s  0.0012 

1q  /rad s  0.001 

1r  /rad s  -0.0025 

2p  /rad s  0.0022 

2q  /rad s  0.001 

2 3i i   rad  0 

1 3i i   rad  0 

1 2i i   rad  0 

1 2 3i i i     rad  1 

TABLE 2.  INERTIAL-MASS PARAMETERS 

Parameter Unit Value 

1A  2kg m  0.0045 

1B  2kg m  0.0055 

1C  2kg m  0.0035 

2A  2kg m  0.003 

2B  2kg m  0.004 

2C  2kg m  0.0015 

3 3A B  2kg m  0.0035 

3C  2kg m  0.0015 

 

 

Fig. 3. The Lyapunov function L(t) 

 
Fig. 4. The angular velocity component p1(t) of the nanosatellite 

 

 
Fig. 5. The angular velocity component q1(t) of the nanosatellite 

 
Fig. 6. The angular velocity component r1(t) of the nanosatellite 



 

Fig. 7. The angular velocity component p2(t) of the gravitational damper 

 

 
Fig. 8. The angular velocity component q2(t) of the gravitational damper 

 

 

 
Fig. 9. The angular velocity component r2(t) of the gravitational damper 

 

 
Fig. 10. The linear displacement y(t) of the movable unit  

 

 
Fig. 11. The directional cosines α11(t) (red), β11(t) (green), γ11(t) (blue) of 

the main body of the nanosatellite 

 

 
Fig. 12. The directional cosines α21(t) (red), β21(t) (green), γ21(t) (blue) of 

the gravitational damper 



 
Fig. 13. The directional cosines α13(t) (red), β13(t) (green), γ13(t) (blue) of 

the nain body of the nanosatellite 

 
Fig. 14. The directional cosines α23(t) (red), β23(t) (green), γ23(t) (blue) of 

the gravitational damper 

 

CONCLUSION 

As can be seen from Fig. 3, the Lyapunov function has 

an exponential decreasing trend in its mean values. This 

occurs due to the fact that the kinetic energy tends to zero 

due to the interaction between the carrier body and the 

gravitational damper. 

The oscillatory peaks of this function are explained, 

firstly, by the fact that the function corresponds to the 

simplest case of a "solid body" (and very roughly describes 

the stability properties), and, secondly, by the fact that the 

control is not strictly stable at the initial stage. However, the 

chosen form of the Lyapunov function allows us to evaluate 

the stability of the control law, and as can be seen from 

Fig. 3, the stability properties of the chosen control law (13) 

grow with time: from about time 50000 [s], the control law 

(13) can be considered as asymptotically stable. Numerical 

simulations confirm (Fig. 4-12) that the dynamic motion 

process is carried out in the correct way in full compliance 

with the principle of gravitational stabilization. The angular 

velocity components p1,2(t) and r1,2(t) of the main body and 

the damper decrease to zero, and the components q1,2(t) tend 

to the value of the orbital velocity ω0. 

 The derictional cosines of the main body and the 

damper body (fig.11-14) have the time-dependecies, which 

show the transition to the gravitational oriented attitude 

position on the orbit. 
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