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Abstract—The paper considers the dynamics of a dual-spin 

nanosatellite with an internal rotor placed into movable 

module on elastic connections. The nanosatellite consists of two 

modules - a carrier body and a mobile module with a rapidly 

rotating internal rotor, which classifies the nanosatellite as a 

dual-spin spacecraft. The movable module is connected to the 

main module by flexible rods. Changing the length of these 

rods makes it possible to carry out angular displacements of 

the nanosatellite and, therefore, to control the attitude 

dynamics of the nanosatellite. 
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1. INTRODUCTION  

Currently, the nanosatellite format is increasingly used 
for a wide variety of space research programs and missions, 
including the development of satellite systems for remote 
monitoring of the Earth and the study of the properties of the 
upper layers of the Earth's atmosphere (for example, these 
are the Nanosatellite-Gyrostat projects of the MicroMAS-1 
and MicroMAS-2А projects [1, 2]). 

The design of modern nanosatellites in order to increase 
their functionality can provide for the installation of mobile 
modules capable of performing both translational and 
angular motion relative to the carrier body. The mobile 
module can contain various functional equipment such as 
solar panels, communication antennas, optical elements of 
the Earth remote sensing system. When the mobile module 
moves relative to the carrier body, the moments of inertia 
and the angular momentum of the entire nanosatellite 
change, which in turn affects its dynamics [3-5]. 

In such mechanical systems, the movable module can be 
used as an element of a passive rotation stabilization system 
or as an actuator of the nanosatellite's angular motion control 
system [5, 6]. In the present work, a mathematical model is 
constructed for the subsequent analysis of the dynamics of a 
composite nanosatellite with double rotation and a controlled 
elastic longitudinal axis, including the study of perturbed 
motion and the transition to chaotic modes of dynamics. 

2. MECANICAL MODEL 

Consider the coordinate systems located at the centers of 
mass of the components of a nanosatellite with double 
rotation: 

1. CXYZ  is the coordinate system located in the center of 
mass of the entire composite nanosatellite with double 
rotation, the axes of which are parallel to the main central 
axes of inertia of the carrier body; 

2. С1X1Y1Z1 is the coordinate system located in the center 
of mass of the carrier body, the axes of which are parallel to 
the main central axes of inertia of the carrier body; 

3. С2X2Y2Z2 is the coordinate system located in the center 
of mass of the movable module, the axes of which are 
parallel to the main central axes of inertia of the movable 
module; 

4. С3X3Y3Z3 is the coordinate system located in the center 
of mass of the rotor, the axes of which are parallel to the 
main central axes of inertia of the rotor; 

The mechanical model of the nanosatellite with double 
rotation is shown in Figure 1.  

 

 

1 - carrier body, 2 - movable module, 3 – internal rotor, 4 - flexible rod 
control system, 5 - flexible rods. 

Figure 1 - composite nanosatellite with double rotation 

3. MATHEMATICAL MODEL 

A mathematical model of a composite nanosatellite with 

double rotation can be built on the basis of the theorem on 

the change in angular momentum. The total angular 

momentum of a composite nanosatellite in the CZYZ 

coordinate system has the form: 
 

 1 21 2 31 3
K = K +δ K +δ K  (1) 



where K  is angular momentum of nanosatelite, 1
K  is 

angular momentum of carrier body, 2
K  is angular 

momentum of mobile module, 3
K  is angular momentum of 

rotor, 21
δ  – transitional matrix from С2X2Y2Z2 coordinate 

system to the CXYZ coordinate system, 31
δ  – transitional 

matrix from С3X3Y3Z3 to CXYZ coordinate system. 
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where   and   are the angles of deviation of the movable 

module relative to the body of the carrier along the С2X2 

and С2Y2 axes, respectively 
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where   is the angle of rotation of the rotor relative to the 

movable module along the z axis 
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In the considered mathematical model of a composite 

nanosatellite, we will consider the angles  and  to be 

small, this makes it possible to linearize the mathematical 

model of a composite nanosatellite with respect to these 

parameters. Let us write expressions for determining the 

angular moments of the parts of the nanosatellite: 

 

 i i i i i im  K I ω V R  (5) 

 

where i is number of the part (of the body) of the 

nanosatelite, iI  is tensor of inertia, iω  is angular velocity, , 

iV  is linear velocity of the mass center of the body, iR  is 

distance from the center of mass of the part of the composite 

nanosatellite relative to the center of mass of the entire 

nanosatellite, im  is mass of the body. 

The expressions for the inertia tensors of the parts of the 

composite nanosatellite are written in the following form: 

 

  , ,i i i idiag A B CI  (6) 

 

where , ,i i iA B C  are principal central moments of inertia of 

the composite nanosatellite. 

Let us determine the angular velocities of the parts of the 

composite nanosatellite. We can write the expression for the 

angular velocity of the carrier body: 
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where , ,p q r are the components of the angular velocity 

vector of the carrier body. 

 

The angular velocity of the movable module and the rotor 

will consist of relative and external components. For the 

movable module, the relative angular velocity will be the 

rotation of the movable module relative to the carrier body, 

and the exteral one will be the angular velocity of the carrier 

body. The expression for determining the angular velocity 

for the moving module is: 

 

 
2 21 1

0





 
 

  
 
 

ω δ ω  (8) 

 

By analogy with the expression (8), we calculate the angular 

velocity of the rotor: 
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Linear velocities of parts of the composite nanosatellite are 

calculated as follows: 

 

 i i i V ω R  (10) 

 

4. MODELING RESULTS 

 

Let us consider the case of the nanosatellite attitude 

motion at small oscillations of the movable module with the 

following hypothetical harmonic time-functions of the   

and  angles:  
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where 1  and 2  are the small amplitudes of the 

oscillations, 1  and 2 - are the oscillation frequencies. 

The previous research in the framework of satellites and 

dual-spin satellites dynamics [3-4, 11-14] demonstrates the 

possibilities of the chaotic dynamics initiation at small 

internal perturbations. Let us here also to present the chaotic 

modes in the motion of the composite nanosatellite with 

double rotation. To do this, it is advisable to use the well-

known Andoyer-Deprit variables, which are associated with 

the components of the system's angular momentum: 
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To write the dynamical equations in the Andoyer Deprit 

variables, it is necessary to write the Hamiltonian of our 

mechanical system: 

 

 T P H  (13) 

 

where T  is the kinetic energy of the mechanical system, P  

is the potential energy of the mechanical system. Since there 

are no potential forces in the mechanical system, the 

potential energy will be equal to zero. 

 

 TH  (14) 

 

Let us calculate the kinetic energy of the nanosatellite with 

double rotation: 
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The general notation of dynamic equations in Andoyer-

Deprit variables will take the form: 
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To determine the dynamic equation for the angle of rotation 

of the rotor, we write the Lagrange equation of the second 

kind 
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After writing the perturbed equations of dynamics in a 

specific form, taking into account the angular displacements 

of the movable module with the rotor on the controlled 

elastic longitudinal axis, as well as possible external force 

factors, we obtain the Poincaré sections in the Andoer-

Deprit’s phase space {l, L/K} (figures 3 - 4). The 

corresponding inertial-mass parameters of the composite 

nanosatellite used in the simulation are given in Table 1. 

 

Let's divide expression (14) into parts: the part 

corresponding to the kinetic energy of a solid body and  

parts depending on the angles alpha and beta 
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Taking into account (18), we rewrite the system of 

equations(16) in the following form: 
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where  
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To prove the presence of chaotic regimes in the dynamics of 

a nanosatellite, we will use the classical Melnikov method, 

which was developed [7] and generalized [8-10] by well-

known authors. The expression for the Melnikov function is 

written as follows: 
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where the functions lg  and Lg  are defined as follows: 
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Since  and   are trigonometric functions (11), then 

substituting 0t t t  into equation (21) and then 

integrating it, we obtain expressions of the following form: 
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where 1 2 3 4, , ,     are integration constants. 

As can be seen from expression (23), the Melnikov function 

will be trigonometric and the graph of this function will 

cross the abscissa axis an infinite number of times, which 

indicates the presence of chaotic modes in the dynamics of 

the nanosatellite. The graph of the Melnikov function is 

shown in (fig.2). 

 

 
 

Figure 2.The Melnikov function 

( 1 0.1  , 2 0.1  , 1 1  , 2 1.5  ) 



 
Figure 3. The Poincaré section of unperturbed dynamics 

( 1 0  , 2 0  ) 

 

 

 
Figure 4.The Poincaré section of the perturbed dynamics 

( 1 0.1  , 2 0.1  , 1 1  , 2 1  ) 

 

 

As can we see from the Poincaré sections, the unperturbed 

dynamics (fig.3) is characterized by the invariant forms of 

the phase-trajectories, which are separated curves on the 

phase space. In this case, we have the classical form of the 

“pendulum” phase portrait. 

 

In the case of the perturbed dynamics (fig.4) we can see the 

so-called chaotic layers near the separatrixes region and also 

in the upper part of the phase space. This proves the 

initiation of the corresponding chaotic dynamics of the 

nanosatellites with the heteroclinical initial conditions for 

the motion parameters in the separatixes zone. 

 

TABLE1 INERTIAL-MASS PARAMETERS 

Parameter name Parameter value  

A1 0.013 [kg⸱m2] 

B1 0.009 [kg⸱m2] 

C1 0.006 [kg⸱m2] 

A2=B2 0.0045 [kg⸱m2] 

C2 0.0035 [kg⸱m2] 

A3=B3 0.002 [kg⸱m2] 

C3 0.003 [kg⸱m2] 

m1 3 [kg] 

m2 2 [kg] 

m3 1 [kg] 

ε1=ε2 0.1 

Ω1=Ω2 1 [1/s] 

 

 

5. CONCLUSION 

The attitude motion of the dual-spin nanosatellite was 

considered at small oscillations of the elastic axis of the 

internal rotor. The possibilities of the chaotic regimes 

initiation in the attitude dynamics of the dual-spin 

nanosatellite with the elastic axis is demonstrated. 

The further research will be directed on the analysis of the 

chaotic modes arising and avoiding due to presence in the 

system small distributions and damping factors. 
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