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Abstract—In this work new strange attractors are found. 

These strange attractors can correspond to special dynamical 

regimes in attitude dynamics of multi-spin spacecraft and 

gyrostat-satellites. The attractors arise in the dynamical systems, 

which are structurally related to the Newton-Leipnik system. In 

addition, the complex modes structurally close to chaotic strange 

attractors are considered. 
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I. INTRODUCTION  

Searching and detailed investigating of strange attractors in 
phase spaces of systems of various nature is one of the main 
important problems of the modern nonlinear dynamics. It is 
well-known fact that many dynamical systems contain strange 
chaotic attractors; among such systems it is possible to indicate 
the rigid bodies mechanical systems and their applications into 
space flight dynamics, including tasks of attitude dynamics of 
compound multibody spacecraft. 

One of the important constructional schemes of multibody 
spacecraft is the scheme of multi-spin spacecraft (MSSC), 
which uses internal rotors to control the angular motion. As it 
was shown in previous works [1-4] the strange attractors can 
be found in the phase space of the MSSC dynamical system, 
and, moreover, they can be intentionally initiated with the help 
of usual equipment using (internal rotors’ engines, external 
thrusters, etc.) and MSSC parameters changing/selecting. 

The indicated task of the intentional initiation of strange 
chaotic attractors into systems dynamics is connected with new 
aspects of dynamical chaos and its application. For example, it 
is possible to use properties of MSSC chaotic dynamical 
regimes to implement the attitude reorientation of spacecraft 
[2, 3]. In this connection, detecting/generating of classical and 
new strange attractors into MSSC dynamics is the quite 
important modern task; also this task can be considered as the 
special task of signal processing. 

In this paper we use the MSSC dynamical system as the 
basic target system, which is described by three ordinal 
differential equations. In this 3D quadratic continuous time 
system we will generate some new strange chaotic attractors. 

II. MAIN DYNAMICAL SYSTEMS  

The MSSC [1-3] represents the multi-body (multi-rotor) 

constructional scheme with conjugated pairs of rotors placed 

on the inertia principle axes of the main body (fig.1). General 

properties of the MSSC attitude dynamics are connected with 

the internal redistribution of the angular momentum between 

the system bodies (the main body, and rotors) due to the 

internal torques creation by internal rotors engines.  

 

 

Fig.1.   The MSSC as the multirotor system 

 

As it was realized previously [1-3] we can consider the 

attitude dynamics of the MSSC basing on the dynamical 

equations for the multi-rotor system with 6N rotors (Fig.1) 

contained into N layers on six general directions coinciding 

with the principle axes of the main body: 
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 (1) 

In these equations the following notations are used: ω=[p, q, 

r]T – the vector of the absolute angular velocity of the MSSC 

main body (in projections on the connected frame 

Oxyz); ˆ ˆˆ, ,A B C  are the summarized moments of inertia of the 

MSSC; ,e e e

x y zM M M   the external torques acting on the 

system. The summarized rotors’ angular momentums in the 
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considered case are formed by the control system in the shape: 

12 0 34 0 56 0; ; ,p q rD p D q D r            (2) 

The “external” torques also are created (by thrusters) as 

follows: 

1 1 1; ; ,e e e

x x y y z zM m p M m q M m r         (3) 

Therefore, we have the following constant “controlling” 

terms/coefficients: 

 0 0 0 1 1 1, , , , , , , , , , , constx y z p q rm m m           

 

III. EVALUATING THE MSSC PARAMETERS DELIVERING THE 

DYNAMICS WITH STRANGE CHAOTIC ATTRACTORS 

As it was indicated [5, 6] the quite general natural 

candidates for the construction of dynamical systems with 

multi-scroll chaotic attractors are 3D quadratic continuous 

time systems given by equations 
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  (4) 

 

where   30

0 9
, ,i i i i

Coeff a b c
 

   is the set of constant 

parameters. 

 Basing on expressions (2) we can solve the linear 

algebraic equations (1) relatively  , , ;p q r and with 

designation of the variables  ; ;p x q y r z   it is 

possible to write the concretized coefficients for the system 

(4) through the controlling parameters [2]: 
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Now with the help of connections (5) we can equate the 
MSSC dynamical system in the form (4), that allows to initiate 
into the MSSC dynamics some possible strange attractors by 
creation of natural controlling torques (which realize at the 
concrete values of Coeff, e.g. Lorenz, Rössler, Newton–
Leipnik, Wang-Sun, Chen-Lee, etc.). Here it is important to 
underline that we will consider the systems without the 

quadratic terms  
, , 4..6

0i j k i j k
a b c


   .  

However, in our natural dynamical system (1) at the 
torques/momentums (2) and (3) we have the set of the natural 
controlling constants with another dimension (in comparison 
with dim(Coeff)): 

  12
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 Due to the incompatibility of the indicated sets Coeff and 
Control we cannot define exact correspondences between 
theirs coefficients – so we have to use the optimization 
algorithm (e.g. the well-known gradient descent procedure for 
minimizing a misalignment function) to find an optimal 
parameters (6) which deliver given numerical values of the 
coefficients Coeff exactly or approximately. Further, we will 
use the gradient descent procedure for the following quadratic 
misalignment function [2]: 
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Implementing the following iterations [2] (with some values d 
of the mean-square distance between the coefficients Control 
and the assigned target set Coeff): 
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 (8) 
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it is possible to obtain the numerical values for the set Control 
that can provide the realization of some strange attractors 
which will be near to target attractors.  

 Here we must note that in the previous work [2] this 
iterative algorithm was efficiently used to the synthesis of the 
classical well-known Wang-Sun four-scroll chaotic attractor 
[9] and the Chen-Lee two-scroll chaotic attractor [10] in the 
MSSC dynamical system. 

IV. NEW STRANGE CHAOTIC ATTRACTORS  

Now we can implement the indicated above procedure [2] 
to synthesize some new strange chaotic attractors. It is possible 
to fulfill the indicated above iterative algorithm [2] taking the 
Newton-Leipnik system [11] as the target system. For the 
Newton-Leipnik system we have the following concretized set 
Coeff of non-zero numerical coefficients:  
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Now we can implement some calculations of new sets of 

coefficients of systems with strange attractors. 
 
1). Firstly, we present modeling results for the starting 

parameters: 
2ˆ ˆˆ1000; 2500; 3000 [kg m ]A B C     

 
 

0 0 1 0 1 0 1, , , , , , , , , , ,

684, 0, 0, 125, 1428, 0, 0, 106, 2245, 336, 0, 91 .

p x q y r zX m m m         

     
 

 
In this case the iterative algorithm gives the first strange 

attractor at the following final values: 
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  4.9925,finald X    

 
that results in the values of coefficients for the system (4): 
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As the result we have the new system  
 

0.4000 1.0738 10.0403 ;

0.0864 0.2471 0.1118 ;

0.1752 4.7831 ;

x x y yz

SysA y x y xz

z z xy

   


    
  

 (9)  

 
with the new strange chaotic attractor (fig. 2) at the initial 

values      0 0.05; 0 0.1; 0 1.5.x y z    Also this attractor 

(red) is depicted (fig.3) together with the classical Newton-
Leipnik attractor (black).  
 Here it is not out of place to mention that the SysA system 
corresponds to the natural attitude dynamics equation of 
MSSC, and therefore, this new SysA-attractor can be 
intentionally initiated in the MSSC dynamics. 

 
Fig.2.   The new strange SysA-attractor in the system (9) 

 
Fig.3.   The SysA attractor (red) and the Newton-Leipnik attractor (black)  

 
2). The second case of calculations corresponds to the 

following starting parameters: 
2ˆ ˆˆ1000; 2500; 3000 [kg m ]A B C     

 
 

0 0 1 0 1 0 1, , , , , , , , , , ,

696, 0, 0, 121, 1280, 0, 0, 1467, 2271, 326, 0, 228 .

p x q y r zX m m m         

     

 
The iterative algorithm gives the second strange attractor at 

the following final values: 
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 




0 1 0 1 0 1, , , , , , , , , , ,

695.9057, 0, 0, 121.5977, 1281.2392, 0, 0,

1467.3693, 2272.0667, 326.3300, 0, 199.3635 ;

final p x q y r zX m m m         

  

  

 

  4.9793,finald X    

The corresponding values of coefficients for the system (4) are: 
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3 7
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0.2739; 4.7767

a a a

SysB b b b

c c

    
 

      
    

 

 
So we have the new system  
 

0.3999 1.0731 10.0407 ;

0.0863 0.3881 0.1121 ;

0.2739 4.7767 ;

x x y yz

SysB y x y xz

z z xy

   


    
  

 (10) 

 
with the new second strange chaotic attractor (fig. 4) at the 

initial values      0 0.05; 0 0.1; 0 1.5.x y z    This second 

attractor (red) is depicted (fig.5) together with the classical 
Newton-Leipnik attractor (black).  

 

 
Fig.4.   The new strange SysB-attractor in the system (10) 

 

 
Fig.5.   The SysB attractor (red) and the Newton-Leipnik attractor (black)  

3). The third case of calculations corresponds to the 
following starting parameters: 

 
2ˆ ˆˆ1000; 2500; 3000 [kg m ]A B C     

 

 
 

0 0 1 0 1 0 1, , , , , , , , , , ,

696, 0, 0, 121, 1280, 0, 0, 1467, 2271, 326, 0, 1228 .

p x q y r zX m m m         

     

 
The iterative algorithm gives the third strange attractor at 

the following final values: 

 




0 1 0 1 0 1, , , , , , , , , , ,

, 0, 0, 126.8955, 1451.8728, 0, 0,

1473.7799, 2237.0650, 340.5281, 0, 29

682.

2.1 99 ;

4

2

176

final p x q y r zX m m m         

 

  

  

 

  4.9827,finald X    

The corresponding values of coefficients for the system (4) are: 
 

1 2 9

1 2 8

3 7

0.3996; 1.0723; 10.0413;

0.0862; 0.3729 0.1127;

0.3829; 4.7636

a a a

SysC b b b

c c

    
 

      
    

 

 
So we have the third new system  
 

0.3996 1.0723 10.0413 ;

0.0862 0.3729 0.1127 ;

0.3829 4.7636 ;

x x y yz

SysC y x y xz

z z xy

   


    
  

 (11) 

 
with the new strange chaotic attractor (fig. 6) at the initial 

values      0 0.05; 0 0.1; 0 1.5.x y z    This attractor (red) 

is depicted (fig.7) together with the classical Newton-Leipnik 
attractor (black).  
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Fig.6.   The new strange SysC-attractor in the system (11) 

 

 
Fig.7.   The SysC attractor (red) and the Newton-Leipnik attractor (black)  

 

V. SYSTEMS WITH COMPLEX BEHAVIOR CLOSE TO STRANGE 

CHAOTIC ATTRACTORS  

In this section we present two cases of systems which do 
not include the strange attractors, but have the complex 
dynamics of phase trajectories, that can be close to the type of 
strange attractors.  

 
1). The first case of complex dynamics corresponds to 

parameters: 
2ˆ ˆˆ100; 250; 300 [kg m ]A B C   

 

 
 

0 0 1 0 1 0 1, , , , , , , , , , ,

6, 0, 0, 1.5, 13, 0, 0, 15, 23, 32, 0, 13 ;

p x q y r zX m m m         

    
 

 

 




0 1 0 1 0 1, , , , , , , , , , ,

2886.4968, 0, 0, 361.7618, 409.0296, 0, 0,

263.7884, 467.3039, 476.9110, 0, 133.8367 ;

final p x q y r zX m m m         

 

 

 

  10.0578;finald X    

 
Then we take the system: 

 

-0.1298 0.1712 0.03886 ;

-0.7237 0.4003 5.3925 ;

0.1744 4.4904

x x y yz

Complex1 y x y xz

z z xy

  


   
  

 

At the indicated parameters the complex behavior of the 
system Complex1 realizes. Corresponding phase trajectory 
depicted at the figure (fig.8).  

 
Fig.8.   The Complex1 phase trajectory (red) and the Newton-Leipnik 

attractor (black)  

 

2) An interesting case of the complex dynamics of MSSC is 

possible at the following parameters: 
2ˆ ˆˆ100; 250; 300 [kg m ]A B C     

 
 

0 0 1 0 1 0 1, , , , , , , , , , ,

6, 0, 0, 1.5, 13, 0, 0, 15, 23, 32, 0, 13 ;

p x q y r zX m m m         

    
 

 




0 1 0 1 0 1, , , , , , , , , , ,

2947.8679, 0, 0, 23.5201, 430.1965, 0, 0,

77.3623, 500.7775, 105.2338, 0, 38.9642 ;

final p x q y r zX m m m         

 

 

 

  10.0837;finald X    

Then we take the system: 

 -0.0083 0.0369 0.0423 ;

-0.1547 0.1137 5.3641 ;

0.0487 4.4058

x x y yz

Complex2 y x y xz

z z xy

  


   
  
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The corresponding complex phase trajectory with two 

additional dissipative scrolls is presented below.  

 

 
Fig.9.   The Complex2 phase trajectory  

 

VI. CONCLUSION 

In the paper basing on the multi-spin spacecraft 
mathematical models [1] and on the iterative algorithm [2] 
some new strange attractors were found; and their intentional 
initiation in the MSSC attitude dynamics was considered. The 
detected in this paper new strange chaotic attractors are 
structurally related with the Newton-Leipnik system, but they 
have different coefficients and locations in the phase space. 
Also the complex modes structurally close to chaotic strange 
attractors were numerically investigated.  

These strange chaotic attractors can be used for the 
fulfillment of parameters changing of the motion of MSSC, 
space and underwater robots, including the chaotic 
reorientation and chaotic maneuvering. 

The considered dynamical systems with strange attractors 
also can be connected with tasks of signal processing, 
including an investigation and an application of all main 
properties of chaotic signals. 
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