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1 Introduction

As it is well known, the problem of spacecraft attitude control implies the
suppression of large values of the SC angular velocity after separation from the
last stage of the space-rocket or unloading saturated reaction/momentum wheels.
This assumes the large value of the angular momentum of the system (of the main
body spacecraft and/or rotors-wheels) and its discharging. Therefore, the task of
unloading the angular momentum is one of primary tasks of spacecraft attitude
dynamics.

The angular momentum of reaction/momentum wheels can be transferred to the
main spacecraft body using internal interaction [1, 2], and after this translation
the angular momentum value can be decreased with the help of interaction with
the external forces [3–13], e.g., central gravitational forces, which are acting on
spacecraft moving along the orbit.

Due to the big importance of modern space missions with nanosatellites apply-
ing, it is very important to develop the simplest constructional schemes to the
angular momentum unloading, which can be used basing on nanosatellites plat-
forms.

In this work, the scheme of the gravitational unloading is proposed. This scheme
(Fig. 1a) uses the internal body with different general inertia moments (Fig. 1c)
placed in the spherical shell floating in the spherical cavity with viscous liquid
(Fig. 1b). It is clear that at the motion along the orbit this internal body tries to
rotate and to place the gravity-oriented spatial position, due to the properties of
the gravitational stabilization principles. Therefore, the gravity forces initiate the
internal angular motion of the internal sphere relative the cavity with viscous liquid.
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At this internal rotation, the dissipative friction torques arise in the viscous fluid.
This friction torque dissipates the kinetic energy and it acts on the main body of
satellite and decelerates its angular motion. So, as the result, the angular momentum
of satellite will decrease. The suggested spherical damper scheme is similar with
the analogous construction of magnetic damper [3] interacting with geomagnetic
field, where the internal spherical shell with permanent magnets was placed in the
external sphere filled with bismuth: the internal sphere tries to rotate to coincide
with the forces lines of geomagnetic field, and, therefore, this rotation relative the
main body creates the dissipative torque due to the friction in bismuth.

This scheme allows to use this gravitational damper in cases of nanosatellites,
especially if the nanosatellite has a symmetrical construction with three units (Fig.
2), one of which (e.g., central unit) contains this spherical damper.

2 Mathematical Model of the Attitude Motion

So, let us consider the orbital motion of the nanosatellite along the circle orbit:
the system CXYZ is orbital coordinates frame (Figs. 1 and 2), where the axis Z

Fig. 1 A unit of a satellite with the internal spherical cavity (a) filled by a viscous fluid and the
internal floating sphere (b) with the mounted gravitational body-damper (c)

Fig. 2 The nanosatellite with
the central unit with the
gravitational damper and
corresponding coordinates
systems
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is directed from the gravity center to the orbital position of nanosatellite, axis Y is
orthogonal to the orbital plane, and X represents the third right axis. The coordinates
system Cxyz is the central frame connected to the main body of nanosatellite,
coinciding with its general axes of inertia; the system Cx1y1z1 is the central frame
connected to the general axes of the body-damper. In the case of nanosatellite
construction with central damper-body unit (Fig. 2) let us to consider that the orbital
system CXYZ and connected systems Cxyz and Cx1y1z1 are central, i.e., the origin
of all indicated systems is common, and it coincides with the center of mass of the
satellite C.

The attitude position of the coordinates systems can be described by the well-
known Euler’s angles. For the system Cxyz we will use three angles {θ1, θ2, θ3}
of subsequent rotations about the corresponding axes x → y → z starting from the
full coinciding with the system CXYZ. Then the following matrixes for subsequent
rotations take place:

Θ1 =
[

1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

]
;Θ2 =

[
cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2

]
;Θ3 =

[
cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

]

(1)

The complete matrix of transition from the orbital system CXYZ to the connected
system Cxyz has form:

Θ = Θ3 · Θ2 · Θ1 =
[

cos θ3 cos θ2 sin θ3 cos θ1 + cos θ3 sin θ2 sin θ1 sin θ3 sin θ1 − cos θ3 sin θ2 cos θ1

− sin θ3 cos θ2 cos θ3 cos θ1 − sin θ3 sin θ2 sin θ1 cos θ3 sin θ1 + sin θ3 sin θ2 cos θ1

sin θ2 − cos θ2 sin θ1 cos θ2 cos θ1

]
(2)

By the full analogy the system Cx1y1z1 can be translated from the orbital system
CXYZ to the concrete final attitude with the help of subsequent rotations by angles
{ψ1, ψ2, ψ3}:

Ψ = Ψ3 · Ψ2 · Ψ1 =
[

cos ψ3 cos ψ2 sin ψ3 cos ψ1 + cos ψ3 sin ψ2 sin ψ1 sin ψ3 sin ψ1 − cos ψ3 sin ψ2 cos ψ1
− sin ψ3 cos ψ2 cos ψ3 cos ψ1 − sin ψ3 sin ψ2 sin ψ1 cos ψ3 sin ψ1 + sin ψ3 sin ψ2 cos ψ1

sin ψ2 − cos ψ2 sin ψ1 cos ψ2 cos ψ1

]
(3)

The kinematical equations for the angular velocity components of the main
body ω = [p, q, r]T and of the damper ω′ = [p′, q′, r′]T in projections onto its own
connected coordinates systems (xyz and x1y1z1, correspondently) have the shape:

⎧⎨
⎩

p = θ̇1 cos θ2 cos θ3 + θ̇2 sin θ3 + ω0Θ12

q = −θ̇1 cos θ2 sin θ3 + θ̇2 cos θ3 + ω0Θ22

r = θ̇1 sin θ2 + θ̇3 + ω0Θ32

(4)
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⎧⎨
⎩

p′ = ψ̇1 cos ψ2 cos ψ3 + ψ̇2 sin ψ3 + ω0Ψ12

q ′ = −ψ̇1 cos ψ2 sin ψ3 + ψ̇2 cos ψ3 + ω0Ψ22

r ′ = ψ̇1 sin ψ2 + ψ̇3 + ω0Ψ32

(5)

where ω0 is the value of the orbital angular velocity.
Let us consider the case when the inertia tensor of the main body of the satellite

(without the damper) has in the connected system Cxyz the central general diagonal
form J = diag (A,B,C), and the inertia tensor of the damper-body also has the
central general diagonal form J′ = diag (A′,B′,C′) in its connected frame Cx1y1z1.

The dynamical equations of the attitude dynamics on the circle orbit can be
written for the satellite main body and for damper-body as follows [14]:

⎧⎨
⎩

Aṗ + (C − B) qr = 3ω2
0 (C − B)Θ23Θ33 + Mx;

Bq̇ + (A − C)pr = 3ω2
0 (A − C)Θ33Θ13 + My;

Cṙ + (B − A) pq = 3ω2
0 (B − A)Θ13Θ23 + Mz

(6)

⎧⎨
⎩

A′ṗ′ + (
C′ − B ′) q ′r ′ = 3ω2

0

(
C′ − B ′) Ψ23Ψ33 + M ′

x;
B ′q̇ ′ + (

A′ − C′)p′r ′ = 3ω2
0

(
A′ − C′)Ψ33Ψ13 + M ′

y;
C′ṙ ′ + (

B ′ − A′)p′q ′ = 3ω2
0

(
B ′ − A′)Ψ13Ψ23 + M ′

z

(7)

where {�13, �23, �33}, {�13, �23, �33}− are components of matrixes (2) and (3)
corresponding to the directional cosines of the gravitation direction (i.e., the orbital
axis Z) in the connected frames. The vector M = [Mx,My,Mz]T is the torque acting
on the main body from the side of the damper-body due to liquid friction between
the internal and internal spheres (Fig. 1). The vector M′ = [M′

x,M′
y,M′

z]T is the
analogues torque acting on the damper-body from the side of the main body due to
liquid friction.

The interaction of the bodies of the satellite due to liquid friction can be defined
by the relative angular velocity of the damper (relative the main body). Then in
projections onto the connected axes, the torques acting on the main body and on the
damper are equal to the following vectors components:

M =
⎡
⎣Mx

My

Mz

⎤
⎦ = −ν

⎡
⎣

⎡
⎣p

q

r

⎤
⎦ − Θ · Ψ −1 ·

⎡
⎣p′

q ′
r ′

⎤
⎦

⎤
⎦ ;

M′ =
⎡
⎣M ′

x

M ′
y

M ′
z

⎤
⎦ = −ν

⎡
⎣

⎡
⎣p′

q ′
r ′

⎤
⎦ − Ψ · Θ−1 ·

⎡
⎣p

q

r

⎤
⎦

⎤
⎦ (8)

where ν is the damping factor.
It is useful to add the kinematical equations for angles {θ1, θ2, θ3} and {ψ1, ψ2,

ψ3} in form resolved relative the derivatives:
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⎧⎪⎨
⎪⎩

θ̇1 = − 1
cos θ2

(q sin θ3 − p cos θ3 + cos θ3ω0Θ12 − sin θ3ω0Θ22) ;
θ̇2 = q cos θ3 + p sin θ3 − cos θ3ω0Θ22 − sin θ3ω0Θ12;
θ̇3 = r + tgθ2 (q sin θ3 − p cos θ3 + cos θ3ω0Θ12 − sin θ3ω0Θ22) − ω0Θ32

(9)

⎧⎪⎨
⎪⎩

ψ̇1 = − 1
cos ψ2

(
q ′ sin ψ3 − p′ cos ψ3 + cos ψ3ω0Ψ12 − sin ψ3ω0Ψ22

) ;
ψ̇2 = q ′ cos ψ3 + p′ sin ψ3 − cos ψ3ω0Ψ22 − sin ψ3ω0Ψ12;
ψ̇3 = r ′ + tgψ2

(
q ′ sin ψ3 − p′ cos ψ3 + cos ψ3ω0Ψ12 − sin ψ3ω0Ψ22

) − ω0Ψ32

(10)

So, the Eqs. (6), (7), (8), (9), and (10) form the complete systems to modeling
the angular motion of the satellite with the internal gravitational damper relative the
orbital coordinates frame.

3 Modeling Results

Let us present the results of numerical modeling for the satellite with the internal
gravitational damper with parameters indicated in Table 1.

As we see from the modeling results (Figs. 3, 4, 5, 6, 7, 8, and 9), the internal
damper-body can effectively unload the initial angular momentum of the satellite.
It follows from the fact that the equatorial angular velocity components (p, p′, r, r′)
take near-zero values after first 150,000 seconds (Figs. 3 and 5), and after we have
decreasing oscillations with near-zero small amplitudes. The absolute values of q
and q′ will be finally equal to orbital angular velocity (Fig. 4).

The attitude of bodies is evolutionarily coming near to a position along the axes
of the orbital frame, in full accordance with gravitational stabilization principle. The
initial rotational motion relative the orbital frame, as we can see, is stopped due to
the kinetic energy dissipation with the help liquid friction in the internal damper.

Table 1 The modeling parameters

Bodies parameters

Inertia tensor [kg*m2]
Initial angular velocity
[1/s] Initial attitude [rad]

Main body J = diag(0.0045,
0.0055, 0.0035)

ω(0) = [0.0012, 0.001,
−0.0025]

{θ i} = {0.015, 0.01,
0.02}

Damper-body J′ = diag(0.003, 0.004,
0.0015)

ω′(0) = [0.0022,
0.001, 0.0015]

{ψ i} = {0.015, 0.01,
0.02}

Orbital angular velocity ω0 [1/s] 0.0012
Damping factor ν [N*m*s] 0.00001
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Fig. 3 The time-evolution of the angular velocities components p (blue) and p′ (red) of the main
body and the damper-body
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Fig. 4 The time-evolution of the angular velocities components q (blue) and q′ (red) of the main
body and the damper-body
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Fig. 5 The time-evolution of
the angular velocities
components r (blue) and r′
(red) of the main body and
the damper-body
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Fig. 6 The time-evolution of
spatial angles θ1 (red), θ2
(blue), θ3 (gold) of the
attitude of the main body: the
gravitational orientation is
achieved (the main body is
placed along the orbital axes)
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4 Conclusions

The scheme of the satellite angular momentum unloading basing on the internal
gravitational damper in the spherical cavity with viscous liquid was proposed.
This scheme uses the external gravitational field to change the attitude of the
internal damper-body relative the main body of the satellite, and to create, therefore,
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Fig. 7 The time-evolution of angles θ1 (red) and ψ1 (blue) of the attitude of the main body and
the damper-body
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Fig. 8 The time-evolution of angles θ2 (red) and ψ2 (blue) of the attitude of the main body and
the damper-body

dissipative torque of bodies’ interaction due to the internal viscous friction, which
unloads the angular momentum of the system.

The mathematical model of the attitude motion of satellites relative the orbital
coordinates frame at the action of gravitational torques was constructed.

The numerical modeling was provided, that confirms the main suggested princi-
ple of the angular momentum unloading. As we can see from the modeling results,



Gravitational Dampers for Unloading Angular Momentum of Nanosatellites 265

10000 30000 50000

–4

–6

–8

–10

–12

–14

–16

0

–2

[rad]

20000 40000
t [s]

Fig. 9 The time-evolution of spatial angles θ3 (red) and ψ3 (blue) of the attitude of the main body
and the damper-body: the angles have identical dynamics; they will coincide to 150,000 s

the process of the initial angular momentum unloading took about 150,000 seconds
for parameters from Table 1.

Due to its simplicity, the studied scheme can be applied in cases of nanosatellites.
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