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Abstract. The attitude dynamics of the multi-spin spacecraft (MSSC) and the torque-free angular motion of 

the multi-rotor system are considered.  Some types of homoclinic and general solutions are obtained in 

hyperbolic and elliptic functions. The local homoclinic chaos in the MSSC angular motion is investigated 

under the influence of  polyharmonic perturbations. Some possible applications of the multi-rotor system are 

indicated, including gyrostat-satellites, dual-spin spacecraft, roll-walking robots, and also the inertialess 

method of the spacecraft attitude (angular) reorientation/control.   

Keywords: Multi-Rotor System, Multi-Spin Spacecraft, Dual-spin Spacecraft, Gyrostat, Exact Solutions, 
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Introduction  

 The fundamental problem of the rigid body angular motion and corresponding applied 
tasks of the space flight mechanics and especially a spacecraft attitude dynamics remain very 

important and attract the attention of many scientists. The classical results in the framework of 
the indicated problem are described in [1-7] and in other well-known treatises. The modern 

research directions include many aspects [8-45]: the analytical/numerical modeling, the 

analysis/synthesis of the regular/chaotic motion of multi-body systems/spacecraft/vehicles with 

the constant/variable structure under the influence of perturbations. Here as parts of the problem 

we can indicate the comprehensive investigation of the attitude motion of a dual-spin spacecraft 

and gyrostats [8-17], the analysis/synthesis of the multi-rotor systems/spacecraft/vehicles 

dynamics [18-21], the general/homoclinic/heteroclinic solutions obtaining [22-31], the 

local/global chaos exploration [35-45]. 

 First of all, we should indicate the dual-spin spacecraft (DSSC) and gyrostat-satellites 

(GS) as the important space-flight mechanics’ application of the multi-body systems. The two-

body construction of the DSSC allows fulfill the gyroscopic attitude stabilization with the help of 

the rotation of only one of the DSSC's bodies (the «rotor»-body) at the «quiescence» of the 

second body (the «platform»-body). The GS also contains the rotating rotors (usually one or 

three) for the creation of the gyrostatic momentum, and, moreover, the relative angular velocities 

of its rotors (with respect to the main GS’ body) are constant. The investigation of various 

aspects of the DSSC/GS attitude dynamics is the urgent task which is considered in different 
formulations, e.g. [8-17]. 

As the further generalization of the GS construction we can present a multi-rotor (multi-

spin) spacecraft. So, the multi-spin spacecraft (MSSC) is constructed as the multi-rotor system 

with conjugated pairs of rotors placed on the all inertia principle axes of the main body (fig.1). 

General properties of the MSSC motion are connected with the internal multi-rotor system (the 

multi-rotor kernel). This «spider»-type multi-rotor system was described in [18-21] where the 

attitude dynamics, spatial (attitude) reorientations of the MSSC and also roll-walking motions of 

multi-rotor robots are considered. The multi-rotor kernel allows to perform the attitude 

gyroscopic stabilization of the MSSC with the help of a compound spinup of the rotors. Also we 
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can use the MSSC in the traditional DSSC/GS-regimes. One of the important features of the 

MSSC is numerous independent internal degrees of freedom corresponding to the rotors' 

rotations. It is the powerful instrument for the spacecraft's attitude control and/or the angular 

reorientation with the help of an internal redistribution of the system angular momentum 

between the rotors and the main body.  
 For the purposes of the synthesis of necessary (in the framework of space missions) 

regimes of the DSSC/GS/MSSC attitude dynamics we need, first of all, to obtain the essential 
solutions and to analyze the properties of the torque-free angular motion of the corresponding 

mechanical systems – coaxial bodies, gyrostats and multi-rotor systems. These important 
solutions for DSSC/GS motion were obtained in different formulations in the papers [22-31]. 

The mentioned articles include the general and particular (homo/heteroclinic) solutions which 
can be used for the study of the SC weakly perturbed motion under the influence of 

external/internal disturbances (the gravitation/magnetic influence, the resistant environment, the 

construction asymmetry, etc.).  

 Here we have to note the importance of the indicated homo/heteroclinic solutions for the 

investigation of the local chaotic motion with the help of  V.K.Melnikov’s [35], S.Wiggins’ [36] 

and P.J.Holmes’-J.E.Marsden’s [37] approaches. The research results for the chaotic DSSC/GS 

motion analysis were presented, for example, in the papers [29-31, 38-41]. Also the study of the 

non-regular motion modes or, on the contrary, the study of the regularization/synchronization 

properties can be performed with the help of the special methods [42-45]. 

 So, in this paper the MSSC attitude dynamics is considered, some homoclinic and general 

exact solutions are obtained, and cases of chaotic and regular motion under the influence of 

polyharmonic disturbances are investigated.  

1. Mechanical and mathematical models of the system  

Let us investigate the torque-free attitude dynamics of the MSSC and the angular motion of 

the multi-rotor mechanical system (Fig.1) about its mass center (the “fixed” point O). 

 
 

 
(a) 

 
(b) 

Fig. 1.  The multi-rotor systems (the multi-spin spacecraft)  

 

 First of all, we need to consider the multi-rotor system with six identical rotors 

symmetrically placed on the general axes of the main body (Fig.1-a). Then the angular 
momentum of the system can be written in projections onto the frame Oxyz axes connected with 

the central main body  
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where 
m

K  is the angular momentum of the main body with the fixed (“frozen”) rotors; 
rK  is the 

relative angular momentum of the rotors; ω=[p, q, r]
T
 – the vector of the absolute angular 

velocity of the main body; 
i

σ  - the relative angular velocity of the i-th rotor; , ,A B C� ��  are the 

general moments of inertia of the main body; I is the longitudinal inertia moment of the rotor; J 

is the equatorial inertia moment of the rotor calculated relatively the point O. 

 The angular motion equations of the system can be written with the help of the law of the 

angular momentum’s variation in the moving coordinates frame Oxyz  

ed

dt
+ × =

K
ω K M        (1.3) 

where e
M  is the external torque. The vector equation (1.3) can be rewritten  
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where  

, 4 2
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�

��
     (1.5) 

The rotors’ relative motion equations are written in the form 

( ) ( )
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      (1.6) 

where i

jM  is the torque of the internal forces acting between the main body and the j-th rotor; 

, ,e e e

jx jy jz
M M M  are the torques from the external forces acting only on the j-th rotor. 

 The equations (1.4) and (1.6) form the complete dynamical system. 

 

 We can generalize the dynamical equations for the multi-rotor system with 6N rotors 
(Fig.1-b). This system contains N layers with rotors on the six general directions coinciding with 

the principle axes of the main body. We also assume that each layer contains the equal rotors, but 
the rotors in the different layers are different. For the angular momentum of the generalized 6N-

rotors-system we have  
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Here 
kl

σ  is the relative angular velocity of the kl-th rotor (relatively the main body); Il and Jl are 

the longitudinal and the equatorial inertia moments of the l-layer-rotor relatively the point O. 
 Then the equation (1.3) can be written in the following scalar form 

( ) ( ) ( ) ( )
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 The relative motion equations of the rotors are ( )1..l N=  
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 The equation system (1.8) with N systems (1.9) completely describe the angular motion 

of the multi-rotor system with 6N rotors and the attitude dynamics of the multi-spin spacecraft 

(Fig.1-b). 

 

2. The Hamiltonian form of the motion equations 

 Now we construct the mathematical model of the N-layers-multi-rotor system’s motion in 

the Hamiltonian form.  
 The kinetic energy expressions for the six rotors in the j-layer are  
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Then the full system’s kinetic energy is equal to  
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  (2.2) 

In purposes of the Hamiltonian formalism application we introduce the well-known 

Andoyer-Deprit canonical variables [6, 7]. With the help of these variables the angular motion of 

the system’s main body is described by the angles ( )3 2, , lϕ ϕ  of the rotations about the axis OZ, 

about the angular momentum direction, and about the axis Oz  (Fig.2). The canonical Andoyer-

Deprit momentums are defined by the following expressions 

2 3

T T T T T
, , , ij

ij ij

L G K H
l ϕ ϕ δ σ

∂ ∂ ∂ ∂ ∂
′= = ⋅ = = ⋅ = = = ⋅ ∆ = =

∂ ∂ ∂ ∂∂
K k K s K k

� �� �
 (2.3) 

where ijδ  is the relative rotation angle of the ij-rotor ( )ij ij
δ σ=� . 



  

 

 

5 

 

 

 

Fig. 2. The Andoyer-Deprit variables and the system’s main body frame 

 

The components of the system angular momentum can be expressed as the functions of 

the Andoyer-Deprit variables: 
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The canonical momentums for the relative motion of the j-layer-rotors are 

( ) ( )
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From (2.5) the expressions follow 
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 Using the expressions (2.5)-(2.8) the components of the main body angular velocity can 

be written 
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 Also we can rewrite the system's kinetic energy and the angular momentum’s 
components: 
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where nmD  are the following axial summarized angular momentums of the rotors:  
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Taking into account the expressions (2.16), (2.6)-(2.8), the main dynamical equations (1.8) are 

rewritten in the unbalanced-gyrostat-form 
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 Based on (1.9) we obtain the equations for the rotors’ summarized angular momentums 
(2.16): 
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 With the help of (2.9)-(2.11) we express the system kinetic energy (2.2) as the function of 
the Andoyer-Deprit variables: 
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 The Hamiltonian and canonical equations have the form (P – the system potential energy) 
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 In the case of the absence of internal/external forces and torques (P=0) the system’s 

kinetic energy and the angular momentum are constant 

 

const; constT E K G= = = =      (2.22) 

 

 Here we can to note, that the expression (2.20) is the important generalization of the 
Hamiltonian’s form corresponded to the task of the one-rotor-gyrostat’s angular motion [14, 24-

28]. 
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3. The system phase portraits and the homoclinic orbits  

Let’s investigate the system torque-free motion ( )0e e e e

x y z ij
M M M M= = = =  and obtain 

the exact solutions for the homoclinic phase trajectories in the three-dimensional space 

corresponding to the angular velocities components (or in the topologically equivalent space of 

the angular momentum components). In this research we assume  

12 56 34
ˆ ˆˆ ; 0; const 0.A B C D D D≤ < = = = >    (2.23) 

Here we note that the assumption (2.23) is valid for the realization of the symmetrical 

spinup of the rotors on the rays 1-2 and 5-6 (fig.1). Therefore the total values of the summarized 

angular momentums of these rotors are equal to zero ( )12 56 0D D= = . The equatorial axis Oy 

(the intermediate inertia axis) contains the rotors with the nonzero total angular momentum D34. 

3.1. The case of the dynamical symmetry of the main body 

 First of all let’s consider the angular motion of the system with the dynamical symmetry 

of the main body ( )ˆ ˆA B= .  

In this case we have the following structure of the polhodes on the ellipsoid of the angular 

momentum (fig.3)1 [e.g., 2, 24, 27, 28, 31]. This structure has one homoclinic trajectory (the 

homoclinic polhode) with the saddle point ( )*0, 0, 0S p q q r= = > =  and with two loops (blue 

line). Also we need to note that in the considering case the following inequality takes place along 
the homoclinic trajectory: 

( ) ( ) *, :t q t q∀ ∈ −∞ +∞ ≤        (2.24) 

The constants (2.22) for the homoclinic trajectory (at the arbitrary value *q ) are equal to  

( )
2

2 2 2

* * * * 34
ˆ ˆ2 2 2 ;RE E Aq T K K Aq D= = + = = +    (2.25) 

Now we can write the dependences for the homoclinic polhode with the help of the 

combination of expressions (2.15), (2.13) ((2.13) with the multiplier Â ) and (2.25) [28, 31] 

( ) 2

34

2 2

* * 34 * 34

ˆ ˆ ˆ ˆ2 ;

ˆ ˆ ˆ2 2 2R

C C A r AD q P

P K AE AT D Aq D

− + =

= − + − =
     (2.26) 

 From (2.26) the parabola's dependence follows (for the corresponding curves on the Oqr-
projection) 

( )

( )

( )

2

*

34

34 *

ˆ ˆ ˆ

ˆ2

ˆ2

ˆ ˆ ˆ

C C A
q q r

AD

AD q q
r

C C A

−
− =

−
= ±

−

     (2.27)  

Using expressions (2.15), (2.13) ((2.13) with the multiplier Ĉ ) and the perfect square 

separating we can obtain: 

                                                
1 The numerical modeling (and the numerical results plotting) in the angular momentum (or in the angular velocity) components’ space is 

performed based on the numerical integration of the equations (2.17) and (2.18). 
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( ) ( )

( )

2

2 34

2

2
2 2 2 34
* * 34 34 34 *

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ;

ˆ ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

D A
A C A p A C A q R

C A

DA
R CAq Aq D D D A q C A

C A C A

 
 − + − − =
 − 

 
= − + + + = − −  − − 

  (2.28)  

 From (2.28) the ellipse's equation follows (for the corresponding curves on the Opq-
projection) 

( )
2 2

34 34 34
* * *

2

ˆ ˆ ˆ ˆ ˆ ˆ

D D D
p q q q q q q

C A C A C A

     
= ± − − − = ± + − −    − − −     

  (2.29)  

 In the considered case the second equation (2.17) can be rewritten 

( )ˆ ˆ ˆAq C A pr= −�       (2.30) 

 Here we can note that the following coordinates for the point S and the vertices V1,2 
(fig.3) take place 

( ) ( ) *

34
1,2 1,2 *

0;

2
( ) 0; ( )

ˆ ˆV

p S q S q

D
p V q V q q

C A

= =

= = = −
−

 

Using (2.27) and (2.29) we rewrite the last equation (2.30) in the form 

( )
( )

( )34 34
* *

ˆ2 2ˆ ˆ ˆ
ˆ ˆˆ ˆ ˆ

AD D
Aq C A q q q q

C AC C A

 
= ± − + − − 

− −
�

   (2.31) 

The integration of (2.31) gives us 

( )

( )
( )0

34

034
* *

ˆ ˆ ˆ2
;

ˆ ˆ ˆ ˆ2

ˆ ˆ

q t

q

C A ADdq
Mdt M

AD C C A
q q q q

C A

−
= ± =

− 
+ − − 

− 

∫ ∫    (2.32) 

where we can take the vertex V1,2 as the start of the homoclinic trajectory with the corresponding 

initial q-value: 34
0 *0

2

ˆ ˆVt

D
q q q q

C A
=

= = = −
−

; then the saddle point S is the end of the homoclinic 

trajectory at t → ±∞ . The reduced form of the integral (2.32) can be written as follows 

( ) ( )

( )

0* *

34
34

*

;

ˆ ˆ2 2
; 2 0

ˆ ˆ ˆ ˆ

V

q t

q

dq
Mdt

q q b q q

C A D D
M b q

AC C A

= ±
− + −

−
= = − >

−

∫ ∫
    (2.33) 
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Fig.3 The angular momentum ellipsoid with the plane projections 
A=0.5,  B=0.5,  C=0.7 [kg·m2];     D34=0.1, K*=1 [kg·m2/s] 

The last integral can be evaluated with the help of the standard quadrature [33] 

( )

1
ln

dx ax b b

b ax b bx ax b

+ −
=

+ ++
∫  

As the result we obtain 

* *

* *

1 1
ln ln

V

q

q

q q b b q q b b
Mt

b q q b b b q q b b

− + − − + −
± = =

− + + − + +
      (2.34) 

Using (2.24) we can solve the problem with modules in (2.34): 

34 34
* *

34 34
* *

2 2
2

ˆ ˆ ˆ ˆ1
ln

2 2
2

ˆ ˆ ˆ ˆ

D D
q q q

C A C A
Mt

b D D
q q q

C A C A

 
− − + − 

− − ± =
 

+ − + − 
− − 

   (2.35) 

After some transformations the analytical dependences for the homoclinic polhode follow 
from (2.35): 



  

 

 

11 

 

 

( )
( )( )

( )( )
( ) ( )( ) ( ) ( )( )

2

34 34
* *2

1 exp2 2
2 ;

ˆ ˆ ˆ ˆ
exp 1

; ;

bMtD D
q t q q

C A C AbMt

p t p q t r t r q t

− ± 
= − − + 

− −  ± +

= =

  (2.36) 

where the explicit homoclinic dependences p(t) and r(t) are obtained with the help of the 
substitution of the solution (2.36) into expressions (2.29) and (2.27). The verification (Fig.4) 

demonstrates the full coincidence of the analytical results (2.36) and the numerical calculations. 

 

Fig.4 The homoclinic dependences:  

the analytical results (points) and the numerical integrations (lines)  
A=0.5,  B=0.5,  C=0.7 [kg·m2];     D34=0.1, K*=1 [kg·m2/s] 

 

Fig.5 The correspondence between the angular momentum’s ellipsoid and the Andoyer-Deprit phase space  
A=0.5,  B=0.5,  C=0.7 [kg·m2];     D34=0.1, K*=1 [kg·m2/s]  
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As we can see (fig.5)2 the Andoyer-Deprit phase space has the virtual heteroclinic phase 

trajectories (red lines) with the virtual saddles-points ( )VS  connected with the following initial 

conditions  

( ){ } ( ) ( ) ( )
2 2

* 34

*0 0 ; 0 0 0
ˆ

K D
L G K r p q

C

 − 
= ± = ± ⇔ = ± = = 

  

 

These virtual saddles points and the corresponding virtual heteroclinic trajectories vanish 

at the topological transformation of the Andoyer-Deprit plane to the angular momentum’s 

spherical structure: in the angular momentum’s space these phase trajectories correspond to the 

ordinary polhodes with the maximal absolute values of Kz-components ( )*z
K K= . 

 

3.2. The case of the three-axial inertia tensor of the main body 

 Let’s consider the motion of the system with the general inertia tensor of the main body 

( )ˆ ˆˆA B C< < . Corresponding structures of the angular momentum ellipsoid [e.g., 2, 24, 27, 28, 

31] and the Andoyer-Deprit phase space are presented at fig.6,7. We have two homoclinic two-

loop orbits with the saddle points 1S , 2S  and the loop-vertex points 1,2V  and 1,2W . 

 

Fig.6 The angular momentum ellipsoid with the plane projections 

A=0.5,  B=0.7,  C=0.9 [kg·m2];     D34=0.1, K*=1 [kg·m2/s] 

                                                
2 The numerical modeling (and the numerical results plotting) in the Andoyer-Deprit phase space is performed based on the numerical integration 

of the equations (2.21). 
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(a) 

 
(b) 

 
(c) 

 

Fig.7 The correspondences between the angular momentum ellipsoid and the Andoyer-Deprit phase space 
A=0.5,  B=0.7,  C=0.9 [kg·m2];     K*=1 [kg·m2/s]; 

(a) D34=0.10,   (b) D34=0.12,   (c) D34=0.15 [kg·m2/s] 
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In this case we have the following values for constants (2.22) at the defined value 
*q  

( )
2

2 2 2

* * * * 34
ˆ ˆ2 2 2 ;RE E Bq T K K Bq D= = + = = +   (2.37) 

The coordinates of the saddle points are 

( )1 *

* 34 34
2 *

0; ; 0 ;

2
0; ; 0

ˆ ˆ

S p q q r

K D D
S p q q r

B B

= = =

+ 
= = − = − − = 

 

   (2.38) 

 Similarly to the previous case we can write the dependences for the homoclinic polhode. 

Using expressions (2.15), (2.13), (2.37) ((2.13) with the multiplier Â ) and the perfect square 

separating we can obtain the ellipse's dependence: 

( )
2

2 34

2
2

2 2 34 34
* * 34 *

ˆ ˆ ˆ ˆˆ ˆ ;
ˆˆ

ˆ
ˆ ˆ ˆˆ ˆ2 2

ˆˆ ˆˆ
R

D
C C A r B B Aq P

B A

BD D
P K AE AT D B B Aq

B A B A

 
− + − + =  

− 

 
= − + − + = − + 

−  − 

  (2.39) 

 From (2.39) the expression follows 

( )

2 2

34 34
*

ˆ
ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆˆ ˆ

D DB
r B Aq B Aq

C C A B A B A

   
= ± − + − − +      − − −   

 

and in the rewritten form 

( )
( )[ ]( )[ ]* 34 *

ˆ
ˆˆ 2

ˆ ˆ ˆ

B
r B A q q D q q

C C A
= ± − + + −

−
   (2.40)  

 Using expressions (2.15), (2.13), (2.37) ((2.13) with the multiplier Ĉ ) and the perfect 

square separating we obtain once again the ellipse's dependence: 

( ) ( )

( ) ( )

2

2 34

2

2
2 2 2 34
* * 34 34 34 *

ˆ ˆ ˆ ˆˆ ˆ ;
ˆ ˆ

ˆ
ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

D
A C A p B C B q R

C B

DB
R CBq Bq D D D B C B q

C B C B

 
− + − − = 

 − 

 
= − + + + = − −  − − 

  (2.41)  

 From (2.41) the expression follows 

( )
( ) ( )

2 2

34 34
*

ˆ
ˆ ˆˆ ˆ ;

ˆ ˆ ˆ ˆ ˆˆ ˆ

D DB
p C B q C B q

A C A C B C B

   
= ± − − − − −    −  − −   

 

or in the rewritten form 
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( )
( )[ ]( )[ ]* 34 *

ˆ
ˆ ˆ 2 .

ˆ ˆ ˆ

B
p C B q q D q q

A C A
= ± − + − −

−
   (2.42) 

The coordinates of the loop-vertex points 
1,2V  and 

1,2W  are 

( )
( )

( )

( )
( )

( )

34
1,2 * 1,2

34
1,2 * 1,2

2
; 0;

ˆ ˆ

2
; 0.

ˆˆ

V

W

D
q V q q p V

C B

D
q W q q r W

B A

= = − + =
−

= = − − =
−

   (2.43) 

Now we can rewrite the second equation (2.17) 

( )( )
[ ]

( )
[ ]

( )
[ ]34 34

* * *

ˆ ˆˆ ˆ
2 2

ˆ ˆˆ ˆˆ ˆ

B A C B D D
q q q q q q q

B A C BAC

− −
= ± + + + − −

− −
�  

and in the rewritten form 

[ ] [ ] [ ]

( ) ( )
( )( )

* * *

34 34
* *

ˆ ˆˆ ˆ
2 2

2 0; 2 0;
ˆ ˆˆ ˆ ˆ ˆ

q M q q a q q b q q

B A C BD D
a q b q M

B A C B AC

= − − − − −

− −
= + > = − > =

− −

� ∓

 

The following quadrature takes place after the integration 

[ ]

[ ] [ ] [ ]
0

*

0 * * *

qt

q

d q q
Mdt

q q a q q b q q

−
=

− + − + −
∫ ∫∓    (2.44) 

It is the well-known standard integral [33] 

2

0 1 0 0 1 2

2
00 1 2

2 21
ln

a a x a a a x a xdx

xax a a x a x

+ + + +
= −

+ +
∫    (2.45)  

Using (2.45) the quadrature (2.44) can be rewritten 

[ ]
[ ] [ ] [ ]

( )

( )

( ) ( ) ( )

0

0

*

0 * * *

2
00 1 2

2

0 1 0 0 1 2

2 1 0

* * *

1
;

2 2
ln ;

1; ; ;

1 1
;

qt

q

q

q

d q q
Mdt

q q a q q b q q

dx
F x

ax a a x a x

a a x a a a x a x
F x

x

a a a b a ab

Mt F q q F q q F q q
ab ab

−
± =

− − − − −

= −
+ +

+ + + +
=

= = + =

± = − − = − − − −  

∫ ∫

∫

   (2.46) 



  

 

 

16 

 

 

Here we note the following circumstances: 

1). At the solutions finding for the homoclinic loops with the saddle S1 we have to take 

the coordinates of the vertices 1,2V  as the initial q-values:   

0 *Vq q b q= = − + ;   ( ) ( )0 * * ln ; .V V VF q q F q q E E b a− = − = = −   (2.47) 

2). At the solutions finding for the homoclinic loops with the saddle S2 we have to take 

the coordinates of the vertices 1,2W  as the initial q-values:  

0 *W
q q a q= = − + ;   ( ) ( )0 * * ln ; .W W WF q q F q q E E a b− = − = = −   (2.48) 

So, the following solution takes place: 

( )[ ] [ ]( ) [ ]( )
[ ]

* * *

*

2 2
ln ;

Const

ab a b q q ab q q a q q b
abMt

q q

+ + − + − + − +
± =

−
   (2.49) 

where { }Const orV WE E= . 

After some transformations the homoclinic dependence q(t) follows from (2.49); and the 

reverse reductions give the homoclinic dependencies ( ) ( ),p t r t : 

( )
( )

( ) ( )( ) ( ) ( )( )

* 2

4 exp Const
;

exp Const 4

;

ab abMt
q t q

abMt a b ab

p t p q t r t r q t

 ± = +
 ± − − − 

= =

    (2.50) 

At the Fig.8 the full coincidence of the analytical results (2.50) with the numerical 
calculations is demonstrated. 

 

Fig.8 The homoclinic dependences:  

the analytical results (points) and the numerical integrations (lines) 
A=0.5,  B=0.7,  C=0.9 [kg·m2];     K*=1, D34=0.15 [kg·m2/s] 
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3.3. The general exact explicit solutions 

Let’s obtain the general form of exact solutions in the Jacobi elliptic functions. Similarly to 

the previous cases, using expressions (2.13), (2.15) ((2.13) with the multiplier Â ) we can write 

the ellipse's dependence in the general form for the arbitrary values of the constants (2.22): 

( ) ( )
2

2 34

2
2 2 34

34

ˆ ˆ ˆ ˆˆ ˆ ;
ˆˆ

ˆ
ˆ ˆ2 2 0.

ˆˆR

D
C C A r B B A q P

B A

BD
P K AE AT D

B A

 
− + − + = 

− 

= − + − + >
−

   (2.51) 

Also with the help of (2.13) and (2.15) ((2.13) with the multiplier Ĉ ) we can write the following 

expression: 

( ) ( )
2

2 34

2 2 2

34 34

ˆ ˆ ˆ ˆˆ ˆ ;
ˆ ˆ

ˆ
ˆ ˆ2 2 0.

ˆ ˆR

D
A C A p B C B q R

C B

B
R EC T C K D D

C B

 
− + − − = − 

= − − + + >
−

   (2.52)  

With the help of (2.51) and (2.52) it is possible to express the p- and r-components of the angular 

velocity as the functions of the q-component, then the substitution of these expressions 

{ }( ); ( )p p q r r q= =  into the second equation (2.17) gives us  

( ) ( )

( ) ( )
( ) ( )

2 22 2

34 34

2 2

ˆ ˆˆ1 1

ˆ ˆˆ ˆ0; 0

ˆ ˆˆ ˆ ˆ ˆ0; 0

dq
dt

B ACq q

D B A D C B

B B A P B C B R

γδ

γ α δ β

α β

γ δ

= ±
− + − −

= − > = − >

= − > = − >

   (2.53) 

Now we can use the change of the variables 

( )
( )

( )
( )

1 1 1/

1 1 1/

q
z

q

α γ β δ β δ

α γ β δ β δ

+ + − − −
=

+ + + − +
    (2.54)  

Then after integration of (2.53) the quadrature follows 

( ) [ ]0 0,F z k N t t I= ± − +      (2.55) 

where the elliptic integral of the first kind F(z,k) takes place [34] 

( )
( ) ( )

( ) ( )

( )
( ) ( )

2 2

2 22 2 2
0

2 22 2

0 0

1 1
, ; 1;

1 11 1

1 1
, const;

ˆ ˆˆ2

z
dz

F z k k
z k z

I F z k N
B AC

α β δ γ

α β δ γ

γ δ α β δ γ

+ − +
= = <

+ − −− −

+ − −
= = =

∫
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After the inversion of the elliptic integral (2.55) we obtain the exact explicit solution in terms 

of elliptic functions (“amplitude” and “elliptic sine”):  

( ) [ ]( )0 0
sn ,z t N t t I k= ± − +     (2.56) 

where 

( ) ( )( ) ( ) ( ) ( )

( ) [ ]

1

0 0
2 2

0

sn , sin , am ,

1 sin

u k u u u k u

d
u N t t I

k

ϕ

ϕ ϕ

ϑ
ϕ

ϑ

−= = = Φ

= Φ = = ± − +
−

∫
 

The reverse reductions give us the exact explicit solutions for the angular velocity’s components 

{ }, ,p q r : 

( )
( )( ) [ ]( ) ( )( )

( ) [ ]( ) ( )

( )( ) ( )( )

2

0 0

2

0 0

1 1 1/ sn , 1 1 1/
;

1 1 sn , 1 1

;

N t t I k
q t

N t t I k

p p q t r r q t

α γ β δ β δ α γ β δ β δ

α γ β δ α γ β δ

+ + + − ± − + − + + − +
=

+ + + ± − + − + + −

= =

  (2.57) 

 Also similarly to the articles [1-3, 28] if the vector of the angular momentum K is 

directed precisely along the axis OZ (it always can be realized by the OXYZ-frame rotation), we 

obtain the exact solutions for the Euler angles (ψ – the precession angle, θ – the nutation angle, ϕ 

– the intrinsic rotation angle): 

( ) ( ) ( )
( )

( )

( )
0 0

34

2

34

0 22 2
2 2

34

ˆ
ˆcos ; tg ;

ˆ

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

t t
x y

x yt t

Ap t
t Cr t K t

Bq t D

Ap t Bq t D q tK p K q
t K dt K dt

K K A p t Bq t D

θ ϕ

ψ ψ

= =
+

 + ++  − = =
+  + + 

∫ ∫

  (2.58) 

 In this case the following correspondences between Andoyer’s-Deprit’s and Euler’s 

variables take place  

cos ;L K lθ ϕ= =  

 The obtained solutions for the MSSC angular velocity (2.57) and for the Euler angles 

(2.58) are connected with results generalizing the classical tasks of the rigid body dynamics and 

corresponding applications, especially, with the angular motion of gyrostats, coaxial bodies and 

the dual-spin spacecraft – here we can indicate the important results [1-4, 22-29].  

 At the end of this section it is worth to underscore that as opposed to the previous MSSC-

results [19] in this article the homoclinic and general solutions were found with the help of the 

polhodes’ geometry analysis [2, 28, 31]. Also we additionally note that the MSSC 

homo/heteroclinic solutions in the article [19] were obtained by analogy with the DSSC solutions 
[30], which were found by V.S.Aslanov using the classical method of the differential equations 

integration [32] with the traditional analysis of the quantity/disposition/multiplicity of the 
polynomials roots at the elliptic (and in limits hyperbolic/trigonometric) quadratures evaluating – 

this approach is quite useful in the classical and modern tasks of rigid bodies dynamics [1-5, 24-

27]. 
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4. Chaos in the MSSC attitude dynamics 

4.1. The perturbed system equations  

Using the Hamiltonian (2.20) we can write the following equations for the positional part 

of the Andoyer-Deprit variables (for the subsystem {l, L}): 

( )

2 2

34 5612

2 2

2 2 2 2 3412

cossin1 sin cos

ˆ ˆ ˆ ˆ ˆ ˆ

sincos1 1
sin cos

ˆ ˆ ˆ ˆ

D l DD ll l L
l L

B BC A A CG L

D lD l
L G L l l G L

B BA A

   
= − − + + −  

 − 

  
= − − + − −  

   

�

�

  (3.1) 

 Let us investigate the local chaos in the MSSC dynamics close to the homoclinic orbits 

under the influence of small harmonic perturbations in the internal engines of the rotors (1.9): 

( )sinij ij ij ijd tε ν ψ∆ = − +�    (3.2)  

where , ,ij ij ijd ν ψ  are the constants, corresponding to the ij-rotor (some of them can be equal to 

zero), and ε is the small parameter (ε<<1). 
These harmonic perturbations are possible, for example, at the presence of harmonic 

errors in the signals of control/regulating/stabilizing systems – it can be due to the delays in the 

rate gyro units.  

From (3.2) the solution directly follows 

( ) ( )0 cos cos
ij

ij ij ij ij ij

ij

d
tε ν ψ ψ

ν
 ∆ = ∆ + + −      (3.3) 

As it was realized in the previous sections, we take the same assumption (2.23). Then we 

have 

( ) ( ) ( ) ( )

( ) ( )

12 1 2 56 5 6

1 1

34 3 4

1

0 0 0, 0 0 0

0 0 0

N N

j j j j

j j

N

j j

j

D D

D

= =

=

   = ∆ + ∆ = = ∆ + ∆ =   

 = ∆ + ∆ ≠ 

∑ ∑

∑
  (3.4) 

Now it is possible to rewrite the canonical equations with the separation of the 

unperturbed (fl,L) and ε-perturbed (gl,L) parts 

;l l L Ll f g L f gε ε= + = +� �      (3.5) 

where 

( )

2 2

34

2 2

2 2 2 234

34 5612

2 2

2 2 3412

cos1 sin cos
;

ˆ ˆ ˆ ˆ

1 1
sin cos sin ;

ˆ ˆ ˆ

cossin
;

ˆ ˆ ˆ

sincos
;

ˆ ˆ

l

L

l

L

D L ll l
f L

BC A B G L

D
f G L l l G L l

B BA

Q l QQ lL
g

BA CG L

Q lQ l
g G L

BA

 
= − − + 

− 

 
= − − − − 

 

 
= + − 

 −

 
= − − 

 

   (3.6) 



  

 

 

20 

 

 

( ) ( )

( ) ( )

( ) ( )

1 2

12 1 1 1 2 2 2

1 1 2

3 4

34 3 3 3 4 4 4

1 3 4

5 6

56 5 5 5 6 6

5 6

cos cos cos cos ;

cos cos cos cos ;

cos cos cos

N
j j

j j j j j j

j j j

N
j j

j j j j j j

j j j

j j

j j j j j

j j

d d
Q t t

d d
Q t t

d d
Q t t

ν ψ ψ ν ψ ψ
ν ν

ν ψ ψ ν ψ ψ
ν ν

ν ψ ψ ν ψ
ν ν

=

=

 
   = + − + + −    

  

 
   = + − + + −    

  

 = + − + + 

∑

∑

6

1

cos .
N

j

j

ψ
=

 
 −  

  
∑

 (3.7) 

4.2. The Melnikov function construction  

In the case with polyharmonic perturbations the Melnikov function can be constructed as 
the “quasiperiodic Melnikov function” [36]. 

As indicated in [36] (Definition 4.1): 

▼Function :f →� �  is said to be quasiperiodic if there exists a r
C  function : l

F →� �  

where F is 2π-periodic in each variable, i.e., 

( ) ( )1 1,..., ,..., ,..., 2 ,..., , , 1,...,l

i l i lF F i lξ ξ ξ ξ ξ π ξ ξ= + ∀ ∈ ∀ =�  

and 

( ) ( )1 ,..., ,lf t F t t tω ω= ∈�      (3.8) 

 The real numbers 
1
,...,

l
ω ω  are called the basic frequencies of f(t). A vector-valued 

function is said to be quasiperiodic if each component is quasiperiodic in the above sense. ▲ 

 So, in compliance with the above mentioned definition, we have the quasiperiodic vector-

valued function Q with 6N basic frequencies ( )1..6, 1..ij i j Nν = = :  

( ) ( )

( )
( )

( )

12 1 2

11 6 34 3 4

56 5 6

,...,

,..., ,..., .

,...,

j j

N j j

j j

Q t t

Q t F t t Q t t

Q t t

ν ν

ν ν ν ν

ν ν

 
 
 = =
 
 
 

   (3.9) 

Here we note that the values ,ij ijd ψ  in the functions ijQ  are the parameters connected only with 

the mechanical properties of the system (this set of parameters is essential for the system and 

can't vary during the mathematical transformations). 

 Then, following [36], for the one-degree-of-freedom Hamiltonian system with 
l-quasiperiodic perturbations we have the corresponding equations 

( ) ( )1

1 2

, ,..., ; ,

0 1
; ,

1 0

l

T

x JDH x g x t t

J D
x x

ε ω ω µ ε= +

   ∂ ∂
= =   − ∂ ∂   

�

    (3.10)  

 This system also can be written in the autonomous form 



  

 

 

21 

 

 

( ) ( )1

1 1

, ,..., ; ,

,

...

,

l

l l

x JDH x g xε θ θ µ ε

θ ω

θ ω

 = +


=


 =

�

�

�

    (3.11) 

where  ( ) 2

1, ,..., ; , l p

lx Tθ θ µ ε ∈ × × ×� � � ,   µ – is the parameters vector. 

For the homoclinic orbit ( )hx t  of the unperturbed (ε=0) system (3.11) and for the Poincaré 

section by the angle 
i

θ  (the repetition of the initial value ( ) 00i iθ θ= :  
0 0 2i iθ θ π→ + ) the 

following quasiperiodic Melnikov function takes place [36] 

( )

( )( ) ( ) ( ) ( ) ( )( )

0 10 0 0

1 0 10 0 0 0 0

, ,..., ,..., ;

, , ,..., ,..., ; ,0

i l

h h i i l l

M t

DH x t g x t t t t t t t dt

θ θ θ µ

ω θ ω θ ω θ µ
+∞

−∞

=

= + + + + + +∫
   (3.12)  

where ,i i  denotes the scalar product.  

It is well-known fact, if at some point ( )0 10 0 0, ,..., ,..., ;l lt θ θ θ µ� ��  the Melnikov function has the 

simple zero-root, then the intersection of stable and unstable manifolds of the homoclinic orbit 

takes place. Usually to the detection of the zero-roots of the Melnikov function only parameter 
0

t  

may be used at the fixed “angle”-parameters ( )10 0 0,..., ,...,l lθ θ θ� �  [36]. 

So, in our case we have the perturbed one-degree-of-freedom Hamiltonian system (3.5) with 

the quasiperiodic perturbation, where ( ),x l L=  - is the main coordinates and 
ij ij

tθ ν=  - are the 

angle-variables. Using the expressions (2.9)-(2.11) and (3.4) it is possible to rewrite the functions 

(3.6) in the following form 

( ) ( )
( ) ( )

( )

( ) ( ) ( )

( ) ( )

( )
( ) ( )( )

2
2

34 34 34

2 2 2

34

34 3 4 3412 1 2 56 5

2 2 2

ˆˆ ˆ ˆ
1ˆ, , , ;
ˆ ˆˆ

1 1 ˆ ˆ, , , ;
ˆ ˆ

, , , , ,

ˆˆ ,...,ˆ ,...,

ˆ ˆˆ

l l

L L

l ij l ij

j jj j j

BAp Bq D D Bq D
f l L f p q r Cr

C B G C r

f l L f p q r Ap Bq D
B A

g l L g p q r

Q Bq DQ Ap QCr

BAG C r

θ θ

θ θθ θ θ

 + + + +
 = = −
 −
  

 
= = − + 

 

= =

 + 
= + − 

−   

( )

( ) ( )
( )( ) ( )

6

12 1 2 34 34 3 4

,...,
;

ˆ

ˆ ˆ,..., ,...,
, , , , , .

ˆ ˆ

j

j j j j

L ij L ij

C

Q Bq D Q Ap
g l L g p q r

BA

θ

θ θ θ θ
θ θ

 + 
= = − 

  

   (3.13) 

The mechanical characteristics of the rotors’ real angular motion are connected with the 

parameters ,ij ijd ψ , therefore in the framework of the mathematical part of the task we can assign 

zero starting conditions for the associated angle-variables 
ijθ  ( )( )0 0, ,

ij
i jθ = ∀ . Also we can 
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define the Poincaré map as the section by the 
31θ - angle (certainly, we could take any other 

angle-variable): 
310

310 310: 2P
θ θ θ π→ +  

With the help of expressions (3.13) the quasiperiodic Melnikov function is written in the 
form 

( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

0 110 310 6 0

0

0

, ,..., ,...,

, , , , ,

, , , , , ,

N

L l ij

l L ij

M t

f p t q t r t g p t q t r t t t

f p t q t r t g p t q t r t t t dt

θ θ θ

θ

θ

+∞

−∞

=

= + −

− + 

∫    (3.14) 

where ( ) ( ) ( )0 0 0 ,ij ij ijt t t t i jθ ν θ+ = + + ∀ ; the homoclinic dependences ( ) ( ) ( ){ }, ,p t q t r t  

correspond to the exact homoclinic solutions (2.50) and/or (2.36).  

 In this paper we focus only at the numerical analysis and simulations of the system’s 

chaotic behavior. The analytical investigation of the Melnikov function (3.14) and the 

antichaotization conditions obtaining are the prospective tasks for independent research. So, in 

the next section we will present the main simulations of the perturbed system behavior, including 

the case of the system regular response under the influence of the polyharmonic disturbances. 

4.3. Numerical simulations of the system chaotic regimes 

4.3.1. The system chaotic motion under the influence of the single-harmonic perturbation 

First of all, we can simulate the system motion with only one disturbance corresponding 

to the small single-harmonic perturbation at the rotor #31: 

( )31
34 31 31 31

31

cos cos
d

Q tν ψ ψ
ν

= + −       (3.15) 

In this case the numerical investigation gives us the following results: the time dependence (the 

time-history) (fig.9-a), the perturbed S1-homoclinic trajectory (fig.9-b), the Poincaré section of 

the S1-homoclinic trajectory in the space of the angular velocity components (fig.9-c), the 

Poincaré section of the S2-homoclinic trajectory in the space of the angular velocity components 

(fig.9-d), the Poincaré section of the system’s phase flow in the space of the angular velocity 

components (fig.9-e), the Poincaré section of the system’s phase flow in the Andoyer-Deprit 

space (fig.9-f). 
As we can see, the chaotic features of the MSSC motion appear ex facte. It also could be 

confirmed with the help of the Melnikov function evaluation (fig.10-a). We should note that at 

the Melnikov function evaluation (fig.10-a) only 
0

t  parameter was varied [36] with all fixed 

0 0.ijθ =  The Melnikov function has the harmonic form with the infinite set of the simple roots, 

and, therefore, the intersections of stable and unstable manifolds of the homoclinic trajectory 

take place – this effect generate so-called homoclinic nets. The homoclinic nets (fig.10-b, c, d) 

were plotted as the sets of the Poincaré-map-images of the unperturbed homoclinic trajectory 

[31]: we separately plot the forward (in the forward direction of the time : 0t → +∞ ) 

Poincaré-map-iterations and the backward (in the back direction of the time : 0t → −∞ ) 

Poincaré-map-iterations. 

 The numerical simulations (fig.9, 10) were performed at the following parameters: 
2 2

34

2 2

31 31 31

ˆ ˆˆ0.5, 0.7, 0.9 [ ]; 0.5, 2.45 [ / ];

1 [ / ]; 2 [1/ ]; 0; 0.06.

A B C kg m D K kg m s

d kg m s sν ψ ε

= = = ⋅ = = ⋅

= ⋅ = = =
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4.3.2. The system chaotic motion under the influence of the three-harmonic perturbation 

Now we present the simulation of the system motion under the influence of the small 

perturbations at the rotors ## 11, 31, 51: 

( )

( )

( )

11
12 11 11 11

11

31
34 31 31 31

31

51
56 51 51 51

51

cos cos

cos cos

cos cos

d
Q t

d
Q t

d
Q t

ν ψ ψ
ν

ν ψ ψ
ν

ν ψ ψ
ν


= + −   




= + −   



= + −   


    (3.16) 

with the following parameters: 
2 2

34

2 2

11 11 31

2 2

31 31 31

2 2

51 51 51

ˆ ˆˆ0.5, 0.7, 0.9 [ ]; 0.5, 3.16 [ / ]; 0.01;

1 [ / ]; 3.5 [1/ ]; 1;

1 [ / ]; 2.5 [1/ ]; 0;

1 [ / ]; 1.5 [1/ ]; 2.

A B C kg m D K kg m s

d kg m s s

d kg m s s

d kg m s s

ε

ν ψ

ν ψ

ν ψ

= = = ⋅ = = ⋅ =

= ⋅ = =

= ⋅ = =

= ⋅ = =

 

As the result we see the typical chaotic features of the motion (fig.11): the phase portraits 

have the well-defined chaotic layers; the Melnikov function has the polyharmonic form with the 
simple roots; the homoclinic net is very complicated.  

 

4.3.3. The system regular motion under the influence of the three-harmonic perturbation 

In this section we present the results (fig.12) of the system motion modeling with the 

same disturbances (3.16), but at the different values of the parameters: 
2 2

34

2 2

11 11 31

2 2

31 31 31

2 2

51 51 51

ˆ ˆˆ0.5, 0.7, 0.9 [ ]; 0.5, 2.45 [ / ]; 0.02;

1 [ / ]; 8 [1/ ]; 1;

1 [ / ]; 10 [1/ ]; 0;

1 [ / ]; 6 [1/ ]; 2.

A B C kg m D K kg m s

d kg m s s

d kg m s s

d kg m s s

ε

ν ψ

ν ψ

ν ψ

= = = ⋅ = = ⋅ =

= ⋅ = =

= ⋅ = =

= ⋅ = =

 

 As the result we obtain the regular dynamical process (fig.12): the time-history of the 

angular velocity components is periodic (fig.12-a); the perturbed homoclinic polhode is the 

regular twisted closed curve (fig.12-b); the Melnikov function is negative and has not any roots 

(fig.12-c); the Poincaré sections include only regular invariant curves without any chaotic 

regions (fig.12-d,f). Also we’d like to emphasize the simple spectrum (with separated 

frequencies) of the Fourier transform for the p(t)-signal (fig.12-e). All of the listed features are 

the typical attributes of the regular dynamical process. 

  

 The mentioned aspects of the regularization of the local homoclinic dynamics under the 
influence of the polyharmonic perturbations are connected, probably, with the following 

phenomena [42-45]: 
- Regular synchronization of complicated nonlinear quasiperiodic oscillations 

(autooscillations) in dynamical systems with corresponding bifurcations and phase portraits’ 
reconfigurations; 

- Chaos synchronization as a phenomenon of periodic regimes’ occurrences in chaotic 
oscillations (autooscillations) under external influences (periodic/chaotic/stochastic); and also 

coupled (drive-respond) chaotic systems synchronizations; 

- Resonance initiation phenomenon (resonance tuning) in chaotic motions. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 

Fig.9 The results of the numerical simulations 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.10 The Melnikov function (a) and the homoclinic nets:  
(a) – the Melnikov function;  (b) – five forward (red) and back (blue)  Poincaré-map-images of the homoclinic separatrix;    

(c) – ten forward Poincaré-map-images of the homoclinic separatrix;   (d) – ten forward (red) and 

 back (blue) Poincaré-map-images of the homoclinic separatrix 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 

 

 
 

(f) 
Fig.11 The results of the numerical simulation (the chaotic motion): 

(a) – the time-history of the angular velocity components (p(t)-black, q(t)-red, r(t)-blue);  (b) – the perturbed homoclinic 

trajectory; (c) – the Poincaré-map in the space of the angular velocity components; (d) - the Poincaré-map in the Andoyer-Deprit 

space; (e) – the Melnikov function; (f) – the homoclinic net as ten forward and back images of the homoclinic separatrix 
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(b) 
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(e) 

 
(f) 

Fig.12 The results of the numerical simulation (the regular motion) 
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 The advanced study of the listed phenomena in the MSSC’s dynamics is the important 

independent research task, which can be considered in further separate publications. Here we 

have to repeat the statement that the Melnikov function is one of the main mathematical 

instruments for the local homoclinic chaotization/regularization investigation: the analytical 

structure of this function allows to obtain explicit conditions of the realization of local 
chaotic/regular modes.  

 Also the harmonic analysis and the Fourier transformation are the very useful tool: it is 
well-known that the chaotic modes have broad “continuous” spectrums, and, on the contrary, the 

regular regimes have simple discrete spectrums (with discrete frequencies). For the illustration of 
the last assertion we present (fig.13) the Fourier transform spectrum of the “p(t)-signal” for the 

considered cases 4.3.1-4.3.3.   

 

Fig. 13 The Fourier transform spectrum of the p(t)-component:  
blue – the chaotic case (4.3.1); red – the chaotic case (4.3.2); green – the regular case (4.3.3) 

5. Additional applications 

In this section the possible applications of the multi-rotor system are shortly described. 

Also some future-technology vehicles are offered. 

5.1. Gyroscopic stabilization, gyrostats and gyrostat-satellites 

In the previous sections we considered the attitude dynamics of the multi-spin spacecraft. 

The main features of the MSSC motion are connected with the multi-rotor system (the multi-

rotor kernel). This kernel allows to perform the attitude gyroscopic stabilization by the rotors’ 

spinup. This method is usually applied to the dual-spin spacecraft and gyrostat-satellites attitude 

stabilization. So, we can use the multi-rotor MSSC in the DSSC-mode and also in the gyrostat-

mode.  
We’d like to note that the considered multi-rotor system has various independent internal 

degrees of freedom corresponding to the rotors' rotations. It is the powerful instrument for the 
support of the spacecraft's attitude stabilization with the help of the internal redistribution of the 

gyrostatic angular momentum between the rotors and the main body. 
Also this multi-rotor system can be used for the investigation of the non-regular motion 

(with strange attractors) of gyrostats in resistant environments and gyrostat-satellites with 

complex feedbacks [41]. 

 



  

 

 

29 

 

 

5.2. The attitude reorientation of the spacecraft 

 The considered in this paper multi-rotor systems allow fulfill series of the rotors' spinups 

and captures to perform the angular reorientation of the SC [18]. For the realization of the 

reorientation maneuver we have to perform the conjugated spinup (in the opposite directions) of 

the pair of conjugated rotors, and then stop one of them. After this capture the rotor's angular 

momentum is transmitted to the main rigid body of the SC, which performs the rotation around 

the corresponding axis. The capture of the second conjugated rotor compensates the angular 

momentum and stops the rotation of the SC's main body.  

 This approach of the attitude reorientation is characterized by the minimal motion inertia 

(or, moreover, by the inertia absence): it means the immediate redistribution of the angular 

momentum between the rotors and the SC's main body. It is possible if we fulfill the immediate 

rotors' captures with the help of the large friction generation or the gear meshing (or other types 

of slip-free engagements). This inertialess feature of the SC's angular motion is unique as 

compared with the classical attitude control realization by the reaction-wheels: as it was 

presented in [18], we can synthesize the piecewise constant angular velocity of the SC's main 
body without any noticeable transient regimes. Also it is possible to perform the compound 

spatial reorientation (the spatial rotation series) with the help of the corresponding conjugated 
spinup-capture-series for the rotors placed in several independent layers (fig.1-b).  

 The inertialess reorientation method is applicable for many types of the SC because the 
multi-rotor kernels can be constructed as quite small devices, which can be placed even in the 

nanosatellites.  

5.3. Roll-walking multi-rotor robots and vehicles 

One of the interesting applications of the considered multi-rotor system is roll-walking 

(somersaulting) multi-rotor robots and vehicles [20, 21].  

So, it is possible to use the internal multi-rotor system as the drive kernel of the roll-

walking robots and vehicles (fig.14). The multi-rotor drive kernel allows to perform the roll-

walking somersaulting motion: to make one step we should turn over the robot body with the 

help of the conjugated spinup-capture.   

For the realization of the roll-walking somersaulting step (the “somersault” around the 

edge) with the one-axis conjugated spinup/capture we can use two ground-fixed points (G1 and 

G2). And only one ground-fixed point (G1) is needed to turn over the robot’s body at the double-
axis conjugated twofold spinup/capture with the gyroscopic torque initiation. 

 

 
Fig. 14 The possible form of the roll-walking robot 
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5.4. Suppressions of the SC chaotic regimes with the help of the internal multi-rotor kernels 

 As it was described in the previous section (4.3.3) the regularization of the local chaotic 

motion takes place under the influence of the special defined polyharmonic torques in the rotors' 

engines. This feature we can use for the initiation of corresponding small polyharmonic torques 

in the rotors' engines to avoid the chaotic regimes. This important «antichaotization» task with 

constructing of «the internal antichaotization multi-rotor kernel» of the spacecraft can be 

considered in the independent separate research. 

 In this framework we can use many dynamical tools such as control techniques with the 

feedbacks, the resonance tuning, the initiation of dominating oscillations with suppressions of the 

«chaotic» frequencies.  

 

5.5. The approach to modeling of the angular motion dynamics 

 of an elastic body at small elastic vibrations 

The mechanical and mathematical multi-rotors models developed in the previous sections 

can be applied to the modeling of the angular motion of an elastic body. We can consider the 

layers of the rotors as rotationally oscillating masses attached to the rigid body (the core body) 

by elastic connections (angular springs). Choosing the angular spring's stiffnesses ijc  

(corresponding to the vibration eigenfrequencies of the elastic body) and the mass-inertia 

parameters of the rotors’ (corresponding to the eigenmodes) we can consider the angular motion 
of the elastic body with the help of the simple dynamical system in the Hamiltonian form: 

{ } { }

( )

2 3

222 2 2 2
2 2 2 34 3412 12

56

26

12 1 2 34 3 4 56 5 6

1 1 1 1

T , , , , , , , ,

cossinsin cos 1
T

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 22 2

1
; ; ;

2

ij ij

R

N N N
ji

j j j j j j R

j j j i j
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Certainly, the selection of the springs’ stiffness and the rotors’ mass-inertia parameters 

should be carried out with the help of the special methods of the definition of the distributed 

oscillations’ parameters of elastic bodies, or experimentally. For the additional modeling of the 

dissipation properties of the elastic body the standard Rayleigh's dissipation function ( )ij
R σ  is 

quite useful. 

Conclusion 

So, in this paper the MSSC attitude dynamics was considered, the homoclinic and general 

exact solutions were obtained, the cases of the chaotic and regular motion under the influence of 

the polyharmonic disturbances were investigated. 
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Attitude dynamics of the multi-spin spacecraft is considered. 

Exact homoclinic and general solutions are obtained. 

Chaotic and regular modes at presence of polyharmonic disturbances are examined. 
 


