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Introduction 
 

Analysis and synthesis of attitude motion of gyrostat-satellites and dual-spin spacecraft 
(DSSC) still remain very important research area of modern spaceflight dynamics.  Non-linear 
motion modes, attitude control, stabilization of spatial orientation and reorientation process of 
spinning spacecraft and gyrostat-satellites are being examined by many authors.  This topic 
connected with classical problems of rotating motion of rigid body, gyrostat and coaxial bodies 
systems. Furthermore, it offers quite models, dynamical systems and research methods in the 
field of non-linear dynamics.  

Classical results of rigid body and gyrostats angular (rotational) motion investigation have 
been collected in many treatises, for example, in [1, 2]. Important aspects of rigid body dynamics 
were presented in [3-6]. Some aspects of gyrostat free motion dynamics in Andoyer–Deprit phase 
space were studied in [7]. 

Papers [8, 9, 10] gave a description of motion of dual-spin spacecraft at realization of a 
momentum transfer maneuver with rotor-body spinup. This maneuver realization can 
demonstrate motion evolutions with nontrivial change of attitude orientation and spacecraft 
longitudinal axis tumble. These evolutions were explained with the help of direct analysis of 
motion equations, numerical experiments and on the base of probabilistic analysis of separatrix 
crossing [8]. Dynamics analysis of modes motion of variable mass (structure) coaxial bodies and 
dual-spin spacecraft with time-dependent inertia moments was conducted, for example, in [11, 
18].   

Recently, research topics of many authors have been focussed on non-linear and chaotic 
phenomena into rotating motion dynamics of rigid body, gyrostat and coaxial system. Non-
integrable cases, non-regular and chaotic modes of coaxial bodies and gyrostat motion and theirs 
applications to the spaceflight mechanics tasks were considered in [6-21]. 

One of the powerful analytical techniques of analysis of dynamical systems chaotization is 
the Melnikov method [22]. The Melnikov method is an effective analytical tool to determine the 
splitting and multiple intersections of homo/heteroclinic orbit. With the use of the Melnikov 
method, several studies were conducted on the chaotic dynamics of the rigid body, gyrostat, 
coaxial bodies and DSSC [11-16, 21 and others], including local chaotization investigation on 
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the base of higher-dimensional expansions of the Melnikov method, which had been developed 
by Wiggins [23], Holmes and Marsden [24].  

The splitting of polhodes-separatrices-orbits implies separation and multiple intersections of 
stable and unstable manifolds of saddle heteroclinic points, which limit the heteroclinic orbit. 
Therefore close to the perturbed heteroclinic orbit phase trajectory forms very complicated 
heteroclinic net [25], which generates the chaotic layer near the unperturbed separatrix region. 
Inside the chaotic layer phase trajectory can passes through different phase space regions and, 
therefore, it performs complicated evolution with repeated escapes (rotation-oscillation-
rotation-…). This fact has proved possibility of realization of non-regular dynamics and complex 
tilting motion of dual-spin spacecraft.   

On purpose to apply the Melnikov method for analysis of the DSSC perturbed motion 
chaotization we have obtained in this paper new analytical heteroclinic solutions for angular 
velocity components of the coaxial bodies system, which consists of a body-carrier and a body-
rotor. These solutions, corresponded to heteroclinic orbits (polhodes) on the inertia ellipsoid of 
the carrier, are the main necessary element for proof of heteroclinic polhode-separatrix-orbit 
splitting at presence of small harmonical perturbation torques on the base of Melnikov method. 
Here we can note, that in [24] analysis of attitude motion chaotization of the coaxial bodies 
system (as rigid body with rotor-attachment) have been conducted  on the base of classical 
analytical solutions for the heteroclinic orbits of free single rigid body (in the absence of native 
heteroclinic solutions, corresponded to the coaxial bodies system).  

Task of heteroclinic solutions obtaining in similar formulation was considered in [1, 2, 12 
and 16]. In contrast to [1, 12] in this paper native dynamics of the coaxial bodies investigates, 
without maintaining of constancy of gyrostatic moment (also called as relative angular moment 
of rotor(s) in carrier body frame: 1 constzh C  ).  

In Ref. [16] heteroclinic solutions were obtained in the Andoyer–Deprit canonical variables 
on the base of classical procedure [for example, 26] for integration of a second order differential 
equations system (for single degree-of-freedom system), which include following four main 
steps: 1)  the system first integral (energy integral/ Hamiltonian) identification, 2) use of the first 
integral to reduction of the second order system to the first order system, 3) integration of the 
first order differential equation in explicit form (in quadrature), 4) inversion of the quadrature 
and reduction to obtain the single-valued final solution. This procedure was effective applied by 
prof. Aslanov to obtaining of the coaxial bodies heteroclinic solutions in Ref. [16]. With the help 
of Ref. [16] solutions heteroclinic dependencies for the coaxial bodies angular velocity 
components can be written, but in this case shape of solutions will be cumbersome: expressions 
will include compositions of radicals, exponents, trigonometric functions and inverse 
trigonometric functions at the same time. 

In Ref. [12] important closed-form of the heteroclinic solutions for gyrostat with constant 

gyrostatic moments  , , constx y zh h h   were obtained with the help of Volterra-Wangerin-

Wittenburg method. Analytical solutions for angular velocity components of the body-carrier 
[12] in this case have cumbersome shape with fractional polynomial functions of hyperbolic 
tangents (highest power of polynomials equal to 12). Practical use of solutions of Ref. [12] 
involves great difficulties at analytical and numerical computations.  

Thus, in present paper on the base of Euler dynamical equations we have obtain new simple 
form of the heteroclinic solutions for the coaxial bodies system in the space of angular velocity 
components.  

In addition to powerful analytical examination, it is very important to provide a many-sided 
numerical analysis of chaotic modes in the system. Thereupon, in this article we have use 
effective numerical tools such as construction of time-dependencies graphs, perturbed polhodes 
3D-curves, Poincaré sections, plotting of heteroclinic net as a set of Poincaré map images of 
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unperturbed separatrix polhode and corresponded invariant fractal set (Smale’s horseshoes) in 
neighborhood of the unperturbed separatrix.  

Also we note that some other methods and models of non-linear dynamics systems theory 
may be applied to research of chaotization of the system motion. First of all, detection and 
identification of irregular attractors (strange/chaotic/quasi) of different type (Lorenz, Ressler, 
Newton-Leipnik, Sprott, etc.) in the three-dimensional space of angular velocity components can 
be implemented [20, 26]. Non-regular modes also can be illustrated [20] with the help of 1) 
construction of complex power spectra of fast Fourier transformation, 2) plotting of compound 
hodograph of coaxial system longitudinal axis vector, 3) calculation of positive Lyapunov 
exponents. Widespread (global) chaos in the system can be shown on the base of Chirikov 
method of overlapping resonances [26, 27] and Greene method of individual system invariant 
tori breakdown [26, 28].   

The present paper is organized as follows. In section 1 the mathematical model of the 
coaxial bodies system and DSSC perturbed attitude motion is constructed. In section 2 the 
explicit analytical solutions for the heteroclinic separatrices orbits in the space of the angular 
moment components are obtained. In section 3 local chaotization of the motion is conducted on 
the base of Melnikov method at presence of small harmonic torque of the coaxial bodies internal 
interaction. In section 4 chaotic motion numerical modeling results are presented. 

 
1. The motion equation of the coaxial bodies and DSSC 

 
Let us consider free attitude motion of the coaxial bodies and DSSC (body #1 is rotor; body 

#2 is main/core/carrier body). Assume that the carrier body has triaxial inertia tensor and the 
rotor is dynamically symmetrical body. We introduce the following systems of coordinates 
(Fig.1): OXYZ is the inertial system of coordinates, Ox2y2z2 – the connected principal system of 
coordinates of the carrier body, and Ox1y1z1 – the connected principal system of coordinates of 
the rotor body. The Oz1 and Oz2 axes of the connected systems are identical to the common 
rotation axis of the coaxial bodies. 

The system motion is described on the base of Euler dynamical equations [1, 2, 8, 11, 18, 19, 
20], and with the help of Andoyer–Deprit canonical variables [3, 4, 7, 12, 16]. The dynamical 
Euler equation of free motion of the coaxial system with four degree of freedom can be written as 
[18]: 
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or in the following form: 
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where  , ,p q r  are components of the carrier body angular velocity which represented in 

projections onto axes of the Ox2y2z2 frame;     the rotor angular velocity relative the carrier 

body;  2 2 2 2, ,diag A B CI  is the triaxial inertia tensors of the carrier body in the connected 

frame Ox2y2z2;  1 1 1 1, ,diag A A CI  is the inertia tensors of the dynamically symmetrical rotor in 

the connected frame Ox1y1z1; 1 2 ,A A A   1 2 ,B A B   1 2C C C   are the main inertia 

moments of the coaxial bodies system in the frame Ox2y2z2 (including rotor); M   is the 

internal torque of the coaxial bodies interaction;  1C r      the longitudinal angular 
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moment of the rotor along Oz1; 
11 zC h    the rotor relative angular moment in the carrier body 

frame Ox2y2z2. Assume that 2 2 2 1 1.A B C A C     

 

 
 

Fig.1. The coaxial bodies system and the coordinate frames 
 

Here we note that the equation system (1.1) corresponded to the free motion of the coaxial bodies 
and the unbalanced gyrostat with non-constant rotor relative angular moment 

1 1 constzh C  (even if 0M  ). In this case analysis results for balanced  consth   gyrostat 

[1, 2, 12] are not applicable. 
In the following research we will use also the Hamilton form of equations in the Andoyer–

Deprit canonical variables. The Andoyer–Deprit variables [3, 4] can be expressed with the help 
of the coaxial system angular moment K (fig.1): 
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In the Andoyer–Deprit variables the system Hamiltonian takes the form: 
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where T – system kinetic energy;  – small non-dimensional parameter; 1H  is perturbed part of 

the Hamiltonian. 
As is follows from the Hamiltonian (1.4), 2 3,I I  and 3 are constants in unperturbed case. 

Then corresponded dynamical system has one degree of freedom ,l L : 
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where    
1 1

1 2 1 2 .A B A A
 

      

We consider the coaxial system perturbed motion in the case when the DSSC rotor spinup 
[9, 10] already was finished, and the rotor was taken the constant angular velocity and the 

corresponded constant longitudinal angular moment const  . Assume that small  1   

disturbance harmonic internal torque takes place [21]:  
cosM t         (1.6) 

The torque (1.6) describes, for example, a signal of control system of internal spinup engine (the 
rotor angular velocity stabilization system) at presence of latency of angular velocity sensor.  

From the last equation (1.2) at presence of the small torque (1.6) the analytical solution 
follows  

( ) ( / ) sint t       

In this case we get the system (1.5) with the perturbations  

   0; sinL lg t g t t         (1.7) 

and with the small non-dimensional parameter 

2
2C





        (1.8) 

In the next section on purpose to apply the Melnikov method for analysis of the DSSC 
perturbed motion chaotization we will obtain new analytical heteroclinic solutions for angular 
velocity components of the coaxial bodies system. 

 
2. Explicit analytical heteroclinic solutions  

in the space of the angular moment components  
 
Let us obtain the analytical solution for the heteroclinic orbit in the space of angular moment 

components.  

Theorem 1. Assume the coaxial bodies interaction absence  0M  . Then the following 

heteroclinic solutions       , ,p t q t r t  of the system (1.2) for the free coaxial bodies take 

place: 
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with the set of constants, which depend on only inertia parameters and initial condition of 
motion: 
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Examination and the theorem proof. 
 
 First of all we define the term “polhode”. The polhode [1] is a curved line of intersection 
of the body angular velocity vector with the body inertia ellipsoid surface. Also the polhode is 
the fourth-order curve of intersection of a kinetic energy ellipsoid and an angular moment 
ellipsoid, which are defined with the help of following expression: 

2
2 2 2

2

1

2Ap Bq C r T
C


         (2.2) 

 
22 2 2 2 2

2 2A p B q C r K DT          (2.3) 

2

2

K
D

T
        (2.4) 

Parameter D [1] can change magnitude in some interval, and each value D defines the concrete 
polhode with corresponded values of the system kinetic energy and the system angular moment. 
Full set of D values defines full set of the polhodes. Thus, we can obtain the set of the polhodes 
on the base of  

a) the kinetic energy ellipsoid and its intersection with the set of ellipsoids of the angular 
moment,  

b) the angular moment ellipsoid and its intersection with the set of ellipsoids of the 
kinetic energy.  

In any case, the polhode is the parametrized curve       , ,p t q t r t  in the space 

 3 : , ,p q r . 

 Projections and general view of the angular moment ellipsoid with the polhodes are 
indicated in Figure 2. On the ellipsoid four different areas take place [1, 5, 7, 11]. These areas are 
divided by the separatrices-polhodes, which represent the heteroclinic orbits "saddle-to-saddle" 
in the phase space of the angular velocity components. These orbits form "big ellipses" (thick 
lines in fig.2).  

It is needed to note, that position of the separatrices-polhodes depend on   value. If   value 

increases then the separatrices-polhodes move along the axis Or with rise of distance OO . At 

critical value [16]  *
2 /K B C B      point O  move to vertex of the ellipsoid, as indicated 

in Figure 3. In this case three areas of polhodes remain in the ellipsoid surface, and the 
separatrices-polhodes become tangential "big ellipses" (instead of intersecting "big ellipses" in 

fig.2) [7, 11, 16]. If  * **
2 /K A C A        then topology of polhodes on the ellipsoid 

remains "critical" structure (fig.3), but the "big ellipses" become "big drops" [7, 11, 16] (fig.4-a). 

If **    then "big drops" collapse – in this case ellipsoid has one-areas-topology (fig.4-b).   
We can write polhodes equations [1] on the base of combination of expressions (2.2) and 

(2.3). Multiplication (2.2) by A and deduction (2.3) give us  
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Multiplication (2.2) by C1 and deduction (2.3) give us 
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Multiplication (2.2) by B and deduction (2.3) give us 
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Expressions (2.5) and (2.6) can be rewritten as follows  
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From last formulas the boundary conditions for D value follow 
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   1 1 2 1 2/ /C C C r r T D A C C r r T        

Formula (2.7) is the q-independent expression which defines the polhodes equation on the 
coordinate plane Opr (fig.2). We can rewrite (2.7) take in to account perfect square 
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We introduce the shifted coordinate axes Opr    (fig.2) and scalable component of the angular 

velocity 

2
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
 


      (2.9) 

From (2.8) the canonical form of equation of hyperbolas follows, which correspond to the 

polhodes in the plane Opr    
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If F=0 then from equation (2.10) we obtain dependencies for asymptotes of the hyperbolas 
(straight line equations): 

   2 2A A B p C B C r         (2.11) 

The relation  
0F         (2.12) 

defines connection between initial conditions of realization of motion along hyperbolas 
asymptotes. We can consider (2.12) as equation for value D  

 
2

22 0
2

a
F T B D a D B

T


           (2.13) 

So, equality D D   is the condition of realization of motion along hyperbolas asymptotes ( D  is 
the root of (2.12)).  

Assume that 0( 0) 0q t q    (or assume that initial time-moment t=0 correspond to 

moment when the q-component equal to zero). Then equation (2.12) can be considered as 
quadratic equation 

   
22 2 2 2 2 2 2 2

0 2 0 1 0 2 02 0 / 0TB K a Ap C r C B A p C r a                  (2.14) 

We can find value 0r  as the root of (2.14) at arbitrary values 0p  and   

 (1,2)
0 0 0 ,r r f p        (2.15) 

From expression (2.5), take into account perfect square, follow  

     
2

2 2
2 2

2

2B A B q C A C r T A D b
A C

 
        

 
  (2.16) 

   
 

2 1 2 1

2 1

C C A C C A
b

A C C

  



 

We can consider (2.16) as equation of ellipses on the coordinate plane Oqr (fig.2). 

Substitution D D   into (2.16) give us equation for  the "big ellipses", corresponded to the 
projections of the separatrices-polhodes: 

   2 2
2 2B A B q C A C r H       (2.17) 

where   22H T A D b    . 
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It is needed to note, that the canonical ellipse equation (2.17) is written in the shifted axes 

Oqr
    , where scalable component of the angular velocity is used 

2

r r
A C


 


       (2.18) 

Thus, we have two equations (2.11) and (2.17), which define the second-order curves, 
corresponded to two projections of the three-dimensional separatrix-polhode.  

Let us obtain exact explicit analytical solution for the heteroclinic separatrix orbits with the 
help of the second Euler equation (1.2), expressions (2.11) and (2.17). Equation (2.11) can be 
rewritten as 

 
 

2 2C B C
p r

A A B



    
     (2.19) 

where    
1 1

2 2B C A C
 

    . 

From (2.17) follow 
2 2

2

2

s q
r

k


      (2.20) 

 
 
 

2 22 2const; const
C A CH

s k
B A B B A B


   

 
 

On the base of (2.20) and (2.19) we can rewrite the second equation (1.2) in the form 

 
 
 

2 2 2 2
2 2

2 2 2
0

C B Cs q s q
Bq A C

k A A B k


  
     

   

   (2.21) 

 

 
Fig.2 
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Fig.3 

 
 
 

 
Fig.4 
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The differential equation (2.21) contains possible quaternary signs alternation, corresponded to 
the four heteroclinic orbits "saddle-to-saddle". These four orbits form the "big ellipses". 

We make the change of variable  
2 2

2

s q
x

k


      (2.22) 

From (2.22) follow  
2

2 2 2

2 2 2
;

k xdx
q s k x dq

s k x
   




 

Then equation (2.21) is rewritten in differential form 

 

   
 

2

2 2 2

2 2 2

k dx
Mdt

x s k x

A C C B C
M

B A A B


 

  

 




    (2.23) 

Equation (2.23) includes two cases of signs of the x-variable. In the both cases we make 
corresponded substitutions 

   

2 2

2 2 2 2 2 2

0 0 0 0

2 2

2 2 2 2 2 2

1). ; 2). ;

k dx k dx
Mdt Mdt

x s k x x s k x

y x y x

x y dx dy x y dx dy

y x y x

k dy k dy
Mdt Mdt

y s k x y s k x

 

 

 

 

 
    

      
     
 

         
 

     
  

    
   

    (2.24) 

As we can see from the last expressions (2.24), both cases give interconnected equation 
again  

2

2 2 2

k dy
Mdt

y s k x
 


    (2.25) 

Take into account twoness of the initial condition  0 0y x     from (2.25) follow  

 0

0 0 0 022 2 2 2 2
; ;

2

y

y

dy Mt s
y y x x

k ky s k y y


 


     

    
  (2.26) 

Expression (2.26) reduces to the standard integral [29] 

 
   

0 0

022 2 2 2 2
2 1 0

2 2 2 2 2 2
2 1 0

2

; 2 ;

y y

y y

dy dy
y y

y a y a y ay s k y y

a k a k a s k

 

 

  
     

       

   
 (2.27) 

where antiderivative  y  has the following shape 

     
2

0 1 0 2 1 0
0

0

2 21
ln ; ; 0

a a z a a z a z a
z E z E z a

za

   
    

From (2.27) we get the solution of equation (2.25)  

     0
0 2

exp
M a

E y t E y t
k


 

  
 
 
     (2.28) 

After transformations the exact explicit analytical solution for the time-dependence y(t) follows 
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 
 

 

0
0 0 2

2

0
0 1 2 02

4 exp

exp 4

M a
a E y t

k
y t

Mt a
E y a a a

k





 
  
 

  
       





   (2.29) 

It is needed to note, that the quadrature (2.27) is quite frequent for heteroclinic solutions in rigid 
body dynamics [15, 16]. 

Making back substitutions we get the exact explicit analytical heteroclinic solutions for all 

components of the angular velocity of carrier body –       , ,p t q t r t : 

 
 
 

 

    

   

2 2

22 2

2

C B C
p t y t

A A B

q t s k y t

r t y t
B C



 
 





    


  
 


     (2.30) 

So, the theorem 1 is completely proved. 
 

Figure 5 demonstrates the validity of solutions (2.30) - we see comprehensive coincidence of 
the analytical dependences (points) and numerical integration results (lines). Case Fig.5-a 

corresponds to the first root (1)
0r  of the quadratic equation (2.12); case fig.5-b – to the second 

root (2)
0r . 

 

     
(a)                         (b) 

Fig.5  The heteroclinic solutions.  
A2=15; B2=8; C2=6; A1=5; C1=4; p0=3.5; 30   

a). (1) (1)
0 0 010.68; 3.18r r            b). (2) (2)

0 0 02.10; 9.60r r      

 
The solutions (2.30) generalize well known heteroclinic dependencies for the free rigid body, 

which were used in many scientific works, for example [11, 24].  
Task of heteroclinic solutions obtaining in similar formulation was considered in [1, 2, 12 

and 16]. In contrast to [1, 12] in this paper the native dynamics of coaxial bodies was investigates 
without maintaining of constancy of the gyrostatic moment ( 1 constzh C  ).  
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In Ref. [16] heteroclinic solutions were obtained in the Andoyer–Deprit canonical variables 
on the base of classical procedure [26] for integration of a second order differential equations 
system (for single degree-of-freedom system), which include following four main steps: 1) the 
system first integral (energy integral/ Hamiltonian) identification, 2) use of the first integral to 
reduction of the second order system to the first order system, 3) integration of the first order 
differential equation in explicit form (in quadrature), 4) inversion of the quadrature and reduction 
to obtain the single-valued final solution. This procedure was effective applied by prof. Aslanov 
to obtaining of the coaxial bodies heteroclinic solutions in [16]. With the help of Ref. [16] 
solutions heteroclinic dependencies for the coaxial bodies angular velocity components also can 
be written, but in this case shape of solutions will be cumbersome.  

On the base of Ref. [16] solutions for the Andoyer–Deprit variables 

     ,L L t l l L t   and kinematic expressions (1.3) we can write the heteroclinic 

dependencies for the angular velocity components       , ,p t q t r t . In this case we get 

complicated (in comparison with (2.30)) shape of expressions, which include compositions of 
radicals, exponents, trigonometric functions and inverse trigonometric functions [16]: 

   
      

  

   
      

  

2
2 2

1 2
2 2 2 2
2 2 2

2 2

2
2 2

1 2
2 2 2 2
2 2 2

2 2

21
sin arccos

2

21
cos arccos

2

L t L t
h a I L t

C C
Ap t I L t

a I L t

L t L t
h a I L t

C C
Bq t I L t

a I L t

  
     

    
  
  

  

  
     

    
  
  

  









 (2.31) 

where 1 2, , const;h a a    structure of the time-dependence  L t  [16] is similar to  y t . 

Reduction of the dependencies (2.31) [16] to the simple form (2.30) by transformations is 
impossible. In turn, the new solutions (2.30) allow easy writing of dependencies 

       , ,L L t l l t l l L t   : 

     

 
 

 

 

  

  
 

 

2 2

2 2 22
2 2 2

2 2
2 2

arcsin arcsin

arcsin

L t C r t C y t W

Ap t Vy t
l t

I L t I C y t W

VL t W
l L t

C I L t

    

  
  


 



  (2.32) 

where  
 

 
2 2

2

const, const .
AC B C B

V W
A B B C

 
   

 
 

The expressions (2.32) have simple form in comparison with paper [16] results.  
In paper [12] important closed-form heteroclinic solutions for gyrostat with the constant 

gyrostatic moments  , , constx y zh h h   were obtained on the base of Volterra-Wangerin-

Wittenburg method. Analytical solutions for the angular velocity components of the body-carrier 
[12] in this case have cumbersome shape with fractional polynomial functions of hyperbolic 
tangents (highest power of polynomials equal to 12). Practical use of solutions [12] involves 
great difficulties at analytical and numerical computations.  

Thus, in present paper on the base of Euler dynamical equations (1.2) integration and 
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geometrical analysis of the polhodes disposition in the space of angular velocity components we 
have obtain the new heteroclinic solutions (2.30). Similar method was applied in [1] to obtaining 
of solutions for angular velocity components of balanced gyrostat.  

 
3. The motion chaotization analysis  

 
Let us examine possibility of the system motion chaotization with the help of Melnikov 

method [22] at presence of the perturbation torque (1.6). 
The Melnikov function in considered case has the form: 

        0 0,L lM t f l t L t g t t dt




      (3.1) 

Take into account (1.3) we can rewrite the integral (3.1): 

         

       

   

2 2
0 2 0 0

0 0

0 1 0 2

sin cos sin ( ) ( )sin

( ) ( ) sin cos cos sin

cos sin

M t I L l l t t dt Ap t Bq t t t dt

Ap t Bq t t t t t dt

AB t J t J

   

    

  

 

 





     

    

   

 

 (3.2) 

where 

       1 2sin ; cosJ g t t dt J g t t dt 
 

 

       (3.3) 

 
 
 

    
22 2 2 2( ) ( ) , const

C B C
g t p t q t s k y t y t

A A B



         


 (3.4) 

 
The function (3.4) is odd and rapidly damped to zero value (fig.6-a). The first improper 

integral (3.3), as area of curvilinear figures delineated by even function    sing t t  (fig.6-b), 

converges to constant R. The second improper integral, as area of curvilinear figures delineated 

by odd function    cosg t t (fig.6-c), is equal to zero: 

1 2const 0, 0J R J         (3.5) 

The result (3.5) also may be obtained by analytical reducing.  
 

The Melnikov functions (3.2) take the cosine form  

   0 0cosM t ABR t       (3.6) 

Therefore, the Melnikov function has infinite number of simple roots. This proves the fact of 
the polhode-separatrix-orbit splitting at presence of small harmonical perturbation torques 
between the coaxial bodies. The splitting of the polhodes-separatrces-orbits implies separation 
and multiple intersection of stable and unstable manifolds of saddle heteroclinic points. 
Therefore close to the heteroclinic orbit phase trajectories form very complicated heteroclinic 
net, which generates the chaotic layer near the separatrix region. The chaotic layer has been 

illustrated (fig.7, 8) with the help of Poincaré sections  mod 2 0t    in the phase space 

 2, /l L I  (the coordinate axes values are dimensionless). Fig.7 contains calculation results for 

subcritical value *    and subcritical topology (fig.2); fig.8 corresponds to critical value 
*    and critical topology (fig.3). 

Inside the chaotic layer the phase trajectory can passes through different phase space regions 
and, therefore, the DSSC performs complicated chaotic evolution with repeated escapes 
(rotation-oscillation-rotation-…).  
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Fig.6 

 
4. Numerical modeling results  

 
In previous section we have proved the fact of the separatrix-polhode splitting and its 

manifolds intersections on the base of Melnikov’s analytical method. This effect led to 
generation of the heteroclinic net with Smale’s horseshoes in the neighborhood of the 
unperturbed heteroclinic orbit.  

In addition to the powerful analytical analysis, it is very important to provide a many-sided 
numerical investigation of chaotic modes in the system. 

First of all, the chaotic layer can be detected with the help of Poincaré sections. The Poincaré 
section like “stroboscopic photography” demonstrates the system phase space at the time 

moments with integer period of the harmonic perturbation  mod 2 0t    . Figures 7 and 8 

illustrate the phase portraits with the chaotic layer near the separatrix in the Andoyer–Deprit 
phase space. 

Time-dependencies graphs (fig.9), polhode 3D-curve (fig.10-a) and Poincaré  map 
“stroboscopic”points of the polhode (fig.10-b) also show chaotic nature of the DSSC motion at 
presence of perturbed torque.  

One of the interesting modeling results is the heteroclinic net plotting. We can plot the 
heteroclinic net as a set of Poincaré map images of the unperturbed separatrix polhode. In the 
fig. 11 we present six Poincaré-map-forward-iterations (in the forward direction of time 

: 0t  ) of the unperturbed heteroclinic separatrix. In the fig. 12 six Poincaré-map-forward-
iterations and six Poincaré-map-back-iterations (in the back direction of time : 0t  )  are 
depicted. As can we see (fig.11), invariant fractal sets (Smale’s horseshoes) in neighborhood of 
the unperturbed separatrix takes places. Intersections of the forward-iterations (red color) and the 
back-iterations (blue color) led to generation of the heteroclinic net (fig.12). 
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(a)     (b) 

Fig.7. Poincaré sections 

2 2 2 1 1 215, 8, 6, 5, 4; 20; 3A B C A C I        : 

a).  0;    b). 0.05; 0.3; 1.0      

 
 
 
 
 
 

      
     (a)            (b) 

Fig.8. Poincaré sections 
*

2 2 2 1 1 215, 8, 6, 5, 4; 20; 10.77A B C A C I             

a).  0;    b). 0.05; 0.3; 1.0       

 
 
 

2

L

I
 

l 
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Fig.9. Time history of the angular velocity component:  

220; 13; 10; 6; 10; 0.1; 0.066;A B C C           

p(t) – black;  q(t) – red; r(t) - blue 
 
 
 
 
 
 
 

          
(a)           (b) 

Fig.10. The perturbed polhode  
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Fig.11. Poincaré map images of the unperturbed separatrix  

and Smale’s horseshoes initiations 
 

 
 
 

       
(a)      (b) 

 Fig.12. Poincaré map images of the unperturbed separatrix and the heteroclinic net: 
a). In the angular velocity components phase space 
b). In the Andoyer–Deprit phase space 
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Conclusion 
 
Heteroclinic dynamics of the free coaxial bodies system and dual-spin spacecraft has been 

examined. The new analytical solutions for the heteroclinic orbits corresponded to the polhode-
separatrix in the space of the angular moment components have been obtained. On the base of 
these analytical heteroclinic solutions analysis of possibility of the system motion chaotization 
with the help of Melnikov method has been conducted.  The analysis has proved the fact of the 
polhode-separatrix-orbit splitting at presence of small harmonic perturbation torques of the 
coaxial bodies internal interaction. The splitting of the polhodes-separatrces-orbits implies 
separation and multiple intersections of stable and unstable manifolds of saddle heteroclinic 
points. Therefore close to the heteroclinic orbit phase trajectories form the very complicated 
heteroclinic net, which generates the chaotic layer near the separatrix region. Inside the chaotic 
layer phase trajectory can passes through different phase space regions and, therefore, the DSSC 
performs complicated chaotic evolution with repeated escapes (rotation-oscillation-rotation-…) 
and the complex tilting motion.  
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