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Abstract. This paper sets out to develop a spider-type multiple-rotor system which can be used 
for attitude control of spacecraft. The multirotor system contains a large number of rotor-
equipped rays, so it was called a “Spider-type System”, also it can be called “Rotary Hedgehog”. 
These systems allow using spinups and captures of conjugate rotors to perform compound 
attitude motion of spacecraft. The paper describes a new method of spacecraft attitude 
reorientation and new mathematical model of motion in Hamilton form. Hamiltonian dynamics 
of the system is investigated with the help of Andoyer-Deprit canonical variables. These 
variables allow obtaining exact solution for hetero- and homoclinic orbits in phase space of the 
system motion, which are very important for qualitative analysis.  
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INTRODUCTION  

Research into attitude motions of rigid body systems has been and remains one of 
the most important themes of theoretical and applied mechanics. Dynamics of the 
attitude motion of such systems is a classical mechanical research topic. Basic aspects 
of this motion were studied by Euler, Lagrange, Kovalevskaya, Zhukovsky, Volterra, 
Wangerin, Wittenburg. The study of the dynamics of rigid bodies remains very 
important in modern science and engineering.  

Among the basic directions of modern research into the framework of the indicated 
problem it is possible to highlight the following points: mathematical modeling and 
analysis of multibody systems motion [1], multibody spacecraft (SC) attitude 
dynamics and control [2]-[18], multibody systems approach to vehicle dynamics and 
computer-based techniques [19], simulation of multibody system motion [21], 
multibody dynamics in computational mechanics [20]. 

If we speak about practical use of system of rigid bodies dynamics research results 
we have to note first of all SC with momentum wheels, reaction wheels and control 
moment gyroscopes (dual-spin satellites, gyrostats, space stations, space telescopes, 
etc.) [1-18]. This paper sets out to develop a new multiple-rotor system, which also 
can be used for attitude control of a SC. Due to the large number of rays with rotors, 
we called the system a “Rotor-type spider”.  
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1. MECHANICAL MODEL OF THE SYSTEM AND 
ATTITUDE REORIENTATION METHOD  

1.1. Mechanical and Mathematical Models of the System 

 We shall investigate an attitude motion of multirotor systems about fixed point O, 
as depicted in Fig.1. 

 
 

(a) 

 
(b) 

FIGURE 1.  Multirotor rigid bodies systems 
 

Firstly we consider rotor-type spider with six rotors which spin about general 
orthogonal axis of main (central) body (Fig.1-a). Let’s assume symmetry of rotors 
disposition with respect to point O and equivalence of their mass-inertia parameters. 
Angular momentum of the system in projections onto the axes of frame Oxyz 
connected with main body is defined by 
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where 
mK  is angular moment of a main rigid body with resting (“frozen”) rotors; rK  

is relative angular moment of rotors; ω=[p, q, r]T is vector of absolute angular velocity 
of main body; i  is relative angular velocity of i-th rotor with respect to main body; 

, ,A B C  are general moments of inertia of main body; I is longitudinal moments of 

inertia of single rotor; J is equatorial moments of inertia of single rotor calculated 
about point O. 

Motion equations of the multirotor system can be obtained considering the change 
of angular momentum in frame Oxyz  
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where eM  is principal moment of the external forces. Eq. (3) can be rewritten as  
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In the last equations following terms are present 
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We need to add equations of rotors relative motion. These equations can also be 
written on the base of the law of the change in the angular momentum  
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where i
jM  is a principal moment of the internal forces acting between main body and 

j-th rotor; , ,e e e
jx jy jzM M M  are principal moments of external forces acting only at j-th 

rotor. 
 Equation systems (4) and (6) together completely describe the attitude 
dynamics of the rotor-type spider (Fig.1-a). 
 Motion equations (4) and (6) corresponding to the spider with six rotors can be 
generalized for description of attitude dynamics of rotor-type spider with 6N rotors 
(Fig.1-b). As presented in Fig.1-b multirotor system has got N rotors on every ray - N 
rotor layers (levels). It is assumed that each layer contains equal rotors. Similarly to 
previous case we can obtain the same equation system (4) for attitude motion of the 
system with N rotor layers (levels), but expressions will contain the following new 
terms  
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where kl  is the relative angular velocity of the kl-th rotor (Fig.1-b) with respect to 

main body; Il and Jl are longitudinal and equatorial moments of inertia (calculated 
about point O) of the rotor corresponding to the l-th layer. 
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 Equations of rotors’ relative motion are given by  
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where 1..l N and therefore we have got N systems like (8) for each kl-th rotor. 
 Equation system (4) with terms (7) and N systems like (8) completely describe 
of attitude dynamics of the rotor-type spider with 6N rotors (Fig.1-b). 
 Thus, we have dynamic equations of attitude motion. Let’s define kinematic 
parameters and corresponding kinematic equations. We will use well-known [23] 
Euler parameters  0 1 2 3, , ,     describing a finite rotation of main body by an angle 

  about an arbitrary unit vector  cos ,cos , cos
T

  e  in inertial fixed frame OXYZ 

which coincides with the initial position of Oxyz (Fig.2).  
 

 
FIGURE 2. Finite rotation 

 
 The Euler parameters are defined by 
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Following system of kinematical equation arises for Euler parameters  
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The above set of dynamic and kinematic equations completely describe of attitude 
motion of multirotor systems.  



PREPRINT of the paper:  Doroshin, A.V. Hamiltonian dynamics of spider-type multirotor rigid bodies systems (2010) AIP Conference Proceedings, 1220, pp. 27-42 
  

1.2. The Method of Attitude Reorientation of the System 

We give a series of definitions.  

Def.1. Conjugate rotors are paired rotors located in the same layer on the opposite 
rays. For example, rotor 3N and rotor 4N (Fig.1-b) are conjugate rotors (also rotor 12 
and rotor 22, etc.).  

Def.2. Conjugate spinup mean a process of spinning up conjugate rotors in opposite 
directions up to a desired value of relative angular velocity with the help of internal 
moments from main body. Velocities of conjugate rotors will be equal in absolute 
value and opposite in sign.  

Def.3. Rotor capture is an immediate deceleration of  rotor relative angular velocity 
with the help of internal moment from the main body. So, rotor capture means an 
“instantaneous freezing” of rotor with respect to the main body. The capture can be 
performed with the help of gear meshing, friction clutch or other methods. 

Now we provide an explanation of the attitude reorientation method.  
Let’s consider conjugate spinup of conjugate rotors 1 and 2 (Fig.1-a) in the absence 

of external moments  0e e e
x y zM M M    assuming initial rest of main body and all 

rotors and mass-inertia symmetry of the system  
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In the simplest case we can use the following piecewise constant of the spinup internal 
moments 
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where 12
st  is the time instant of spinup termination of rotors 1 and 2; 12 const 0M   .  

After the conjugate spinup rotors 1 and 2 will reach an absolute value 
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sS M t I   of relative angular velocity  1 12 2 12,S S     but the main body will 

remain in rest; angular momentum of system will remain equal to zero. After the 

conjugate spinup we capture rotor 1 at time instant  1 1 12
c c st t t . Then the relative 

angular velocity of rotor 1 becomes null  1 0   , but main body will take absolute 

angular velocity p and rotor 2 will change relative angular velocity up to 2.   

Conservation of angular momentum of full system makes it possible to write  

2 0Ap I         (15) 

Similarly, the conservation of angular momentum of rotor 2 makes it possible to write  
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Numerical values for angular velocities after caption of rotor 1 are obtained from 
expressions (15) and (16) 
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At the time  2 2 1
c c ct t t  we capture rotor 2 and then all bodies (main body and both 

conjugate rotors) return to absolute rest.  
Thus we can conclude that conjugate spinup and two serial captures of conjugate 

rotors result in a piecewise constant angular velocity of main body 
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It can be used for main body angular reorientation about corresponding axis. In our 
case the main body performed the rotation about Ox axis by a finite angle 
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2. HAMILTONIAN DYNAMICS OF THE SYSTEM 

2.1. Hamiltonian Form of Motion Equations 

We consider spider-system with N layers of rotors (Fig.1-b). Kinetic energies of six 
rotors in j-layer are  
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Kinetic energy of the system has the following expression 
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Let us describe the system motion with the help of Hamiltonian formalism and 
Andoyer-Deprit canonical variables [24-26]. In this approach the main body attitude 

motion is described by three angles 3 , 2  and l , which correspond to rotation about 

axes OZ, about angular moment direction and about Oz , correspondingly (Fig.3). 
Expressions for canonical momentums (conjugate momenta) have following 
appearances 
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ij  is angle of relative rotation of ij-rotor with respect to the main body  ij ij  . 
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FIGURE 3. Andoyer-Deprit variables and main body coordinate-frame 

Canonical momentums ,L H are components of angular momentum of the system onto 

axes Oz and OZ, and G is equal to value of the angular momentum. It is important to 
note, that the following relation holds 

cos
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G
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where  is the nutation angle, which describes the attitude orientation of the main 
body with respect to the direction of the vector of the system angular momentum. 

Components of system angular momentum can be expressed with the help of 
Andoyer-Deprit canonical variables, and, also, can be written with the help of 
expressions (7): 
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Expressions for canonical momentum of relative motion of  j-layer’s rotors are 
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From (25) it follows 
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Components of angular velocity of the main body can be written with the help of 
Eq. (26)-(28) and (25) as follows  
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Taking into account Eq. (29)-(31), we can express kinetic energy (21) in Andoyer-
Deprit variables: 

 
2

2 2
2 2

5 6
1

2 2
1 2 3 4

1 1

2 2 26

1 2 3 4
1 1 1 1

sin cos 1
2

ˆ ˆ ˆ

sin cos
2

ˆ ˆ

1 1
ˆ ˆ

N

j j
j

N N

j j j j
j j

N N N
ji

j j j j
j j j i j

l l
T G L L

BA C

l l
G L

BA

IBA



 

   

  
             

   

 
                  

 

   
                 

   



 

  

  (32) 

Assuming the absence of internal and external potential forces, the Hamiltonian of 
the system takes on form 
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12 1 2 34 3 4
1 1

26

56 5 6
1 1 1

,

1
, .

2

N N

j j j j
j j

N N
ji

j j R
j j i j

D D

D T
I

 

  

             


      

 

 
   (34) 

We will use the following convenient constant for energy level description  

22
3412

ˆ ˆ22
R

DD
h h T

BA

 
    

 

      (35) 

Now we can write the canonical equations for Andoyer-Deprit variables 

   2 3

;

, , , , , , ,ij ij

Q P
P Q

Q l P L G H  

 
  

 

  

 H H

    (36) 

It is seen that the Hamiltonian (33) depends on coordinate l only, and therefore only 
canonical momentum L is variable, other momentum are constant  

2 3

0,

const; const;

, : const; const .

ij

ij ij

G H

i j D

  

  
     

  

 

   

H H H

     (37) 

Thus the phase space of the system is completely described by two variables {l, L} 
and the corresponding equations 

 

 

2 2
2 2

56

2 2

1 1
sin 2 sin

ˆ ˆ2

cos1 1 1 1 1
cos 2

ˆ ˆ ˆ ˆ ˆ ˆ2 22 2

G L
L l G L D l s

l BA

D l s D
l L l

L B BC A A CG L

   
          

     
           

      





H

H
 (38) 

where  

 
22
34 3412

22
, cos

ˆ ˆ ˆ
D DD

D s
B BDA

       (39) 

2.2. The System Phase Portraits, Homo- and Heteroclinic Orbits  

Traditionally phase space analysis of the system includes phase portraits (PP) 
plotting, description of PP structure and critical points bifurcations investigation. Let 
us carry out a numerical investigation of PP structure and obtain exact solutions for 
homo- and heteroclinic phase-trajectories (PT) which separate areas of PP. 
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 Figures (Fig.4 and Fig.5) illustrate general cases of PP. Clearly, various PP-
types are possible. 

2.2.1. Case Of Dynamically Symmetrical Main Body 

 Firstly let us consider a case of motion of the system with dynamically 

symmetrical main body  ˆ ˆA B . In this case Eq. (38) becomes 

 

 

2 2

56

2 2

sin

cos1 1
ˆ ˆ ˆ

L D G L l s
l

D l s D
l L

L C A CG L


     



 
     

  





H

H
   (40) 

With the help of equation for Hamiltonian (33) phase trajectories can be expressed: 

       

   
2 2

2

562 2

2 2
12 34 34

2 2
12 34

cos ; arccos

1 1
ˆ ˆ2 2

; arccos
ˆ2

R

l s f L l L f L s

G L
f L h L D

A CD G L

D D D
h h T s

A D D

    

 
     

  


   







  (41) 

Value s in this case shifts the PP along l-axis under the conservation of PP energy 
level – it can be shown in Fig.4-c and Fig.4-d. Therefore we can change variable 

 l l s   and assume that s=0. 

Take into account (41) and the trigonometric identity, first Eq.(40) can be rewritten 
as 

 2 2 21L D G L f L        (42) 

Let us obtain exact solutions for heteroclinic separatix PT corresponding to saddle 

(hyperbolic) points SI (Fig.4). Coordinate numerical values  2 , Il n L L  of SI can 

be easy found as coordinates of critical (fixed) point of the system (40)  0, 0l L   . 

Energy level of the separatix PT equals the following constant 

 
22 2

56 2 2

ˆ ˆ2 2

II
I I

L DG L
h D G L

A C


       (43) 

Substitution of (43) into Eq. (42) gives the equation for the separatix PT time-

dependence  IL t   

   1 2 ,I I IL f L f L       (44) 
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    (a)        (b) 

   
    (c)        (d) 

   
    (e)        (f) 

FIGURE 4. Phase portraits of the system.  

Normalized moments of inertia of main body: ˆ ˆˆ 0.5, 0.7A B C   . 



PREPRINT of the paper:  Doroshin, A.V. Hamiltonian dynamics of spider-type multirotor rigid bodies systems (2010) AIP Conference Proceedings, 1220, pp. 27-42 
  

TABLE 1. Calculation parameters for Fig.4.  
Momentum Case (a) (b) (c) (d) (e) (f) 

G, Nms 10 10 7 7 5 5 

D12, Nms 0 0 0 0.9 0 0 

D34, Nms 1 1 1 0.44 1 1 

D56, Nms 0 0.5 0.5 0.5 0.1 0.5 

 

  
(a)               (b) 

 
 (c)              (d) 

FIGURE 5. Phase portraits of the system. 

Normalized moments of main body: ˆ ˆˆ0.5, 0.6, 0.7A B C   . 

 
 

TABLE 2. Calculation parameters for Fig.5.   
Momentum Case (a) (b) (c) (d) 

G, Nms 25 12 6 12 

D12, Nms 0 0 0 0.6 

D34, Nms 1 1 1 0.7 

D56, Nms 0 0 0.5 0.9 
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where 

   

   

2 2
22 2

1 56

2 2
22 2

2 56

1
,

ˆ ˆ2 2

1
.

ˆ ˆ2 2

I
I I I I

I
I I I I

G L
f L D G L h L D

A C

G L
f L D G L h L D

A C

 
       

 

 
       

 





 

Quadratic polynomial  1 If L  has multiple root LI corresponding to S1 point value. 

Quadratic polynomial  2 If L  has two different roots corresponding to L1 and L2 

points. Eq. (44) in this case becomes 

    1 2 ,I I I I IL L L k L L L L        (45) 

where 
2

1 1
ˆ ˆ2 2

k
A C

 
  

 
. 

Change of variable I Ix L L   gives the following final quadrature for Eq. (45) 

0 1 0

1

2
0 1 2

2 2 ( )1
ln

( )

( ) , const

a a x a R xdx
t k C

xx R x a

R x a a x a x C

 
   

   

   (46) 

From (46) with the help of variable back-substitution we can obtain exact explicit 

time-dependence  IL t  of separatix PT in terms of the exponential functions of time. 

It is important to note, that similarly we can obtain analytical expression for time-

dependence  IIIL t  corresponding to heteroclinic orbits for SIII hyperbolic points 

(Fig.4). 

2.2.2. Case Of Triaxial Main Body  

Assume that ˆ ˆˆA B C   and 12 56 0D D  . In this case s=0, and PP corresponds to 

Fig.5-a, Fig.5-b. PP has three types of hyperbolic points: SI, SII, SIII. In considered 
phase space {l, L} point SI has coordinate values 2 , 0l n L  , and point SII :   

2 , 0.l n L     

Energy level of SI is 

2
34

ˆ ˆ2
I

GDG
h

B B
       (47) 

Hamiltonian, corresponding to energy level of SI heteroclinic orbit     ,I Il t L t , 

becomes  
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2 2 2
2 2 2341 1 1

cos cos
ˆ ˆ ˆ ˆ ˆ2 2

I I
I I I I

DG L L
l G L l h

B BA A C

   
        

  

H  (48) 

Taking into account (47) we can express cos Il  from Hamiltonian (48) as solution 

of quadratic equation  

cos
2

I

b Discr
l

a

 
     (49) 

  2 2 2 2 2 2

2 2 2 2 2 2
2 234 34

2

2 234

4 ;

1 1
; ; ;

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 22 2

1 1 1 1 1 1
; .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

I I

I I I
I

Discr b ac G L L

D GDG L G L L G
a b G L c

B B B BA A C

D
G

B B BA A A C

 

 

    

  
         

 

     
          

     

 

Equation for heteroclinic separatrix orbit  IL t  can be written on the base of (38) 

2 2 2 2 341 1
sin cos

ˆ ˆ ˆI I I I I

D
L l G L G L l

B BA

  
      

  

   (50) 

After substitution of (49) Eq. (50) becomes 

 
 

     
22 2

2 2 34
2

ˆ ˆ

ˆˆ ˆ
I I I I I I

DA B
L G L L L L L

BA B
       

 
         

 

 (51) 

Change of variable 

  I IS L L          (52) 

gives the following differential equation  

    2
;

dS
dt

S S S S


    
 

  
   (53) 

where 

     

2 2 2 2 22 2 2
234 34

2 2 22 2
2

ˆ ˆˆ ˆ ˆˆ 21
; ; .

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

D A B D A BA B
G

A B B A B B A B


  

 
     

  
   

It can be shown that one of roots of quadratic polynomial in (53) has the value  . 
Therefore, Eq. (53) becomes 
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     2

dS
dt

S S S S S


   
 

   
   (54) 

where S2 is the second root of quadratic polynomial in (53). Eq.(54) can be rewritten 
in two variants depend on the choice of sign in the radical 

         2 2

;
dS dS

dt dt
S S S S S S S S

 
     

   
     

       (55) 

Both variants of expressions (55) can be reduced to the final quadrature (46). 

 In the case of separatrix corresponding to hyperbolic points SII (Fig.5-a) we can 

conduct an analogous calculation and obtain separatrix homoclinic orbit  IIL t . The 

computation again leads to the final quadrature (46), but constants change theirs 
values: 

22
234 34 1 1

;
ˆ ˆ ˆ ˆ ˆ2

II

GD DG
h G

B B B BA


  
      

  

  

Thus we have obtained analytical solutions in the form of a final quadrature 
corresponding to homo- and heteroclinic orbits of the system. These exact solutions 
are important in dynamic analysis of the system. Homo- and heteroclinic orbits time-
dependencies are the main element of local investigation of chaotic behavior near the 
separatrix with the help of Melnicov theory, including Wiggins, Holms, Marsdens 
results [27-30 ]. 
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