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1. PROBLEM FORMULATION

When an RV is undergoing uncontrolled descent, it
is necessary for it to fall in a certain area of the earth’s
surface with a minimum dispersion of the falling points
and to meet requirements associated with an overload
level and the operating conditions of the parachute sys-
tem. The success in hitting a given area with the
required dispersion of the landing points is defined by
the initial reentry conditions and by the features of the
vehicle. To ensure the required angles of reentry into
dense layers of the atmosphere, the RV must be ori-
ented in a specific way and a brake impulse must be
given out. The RV is stabilized by its spin-up about the
longitudinal axis. After the RV has entered the atmo-
sphere, the angular velocity of the spin should be can-
celled in order to create operating conditions for the
parachute system and to prevent resonant modes of
motion [1, 2]. The cancellation of the RV angular veloc-
ity can be performed by applying a system of weights
on unreeling cables, which are separated at the end of
the process [3].

One method of stabilization without subsequent
cancellation of the angular velocity of the entire vehicle
is its partial spin-up, when some part of the RV is put
into rotation and separated after the reentry. The return
part of the RV is not put into rotation. In this case, the
vehicle is a mechanical system of two rigid bodies with
a common axis of rotation. One of the bodies is a stabi-
lizing unit, and the other is the RV. The devices with
partial spin-up can be used in remote systems for sens-
ing the earth’s surface to deliver the obtained photo-
graphic material to the earth. Body 

 

1

 

 is a stabilizing unit
with a brake engine separated after the reentry, and
body 

 

2

 

 is the proper reentry object (Fig. 1).

There are papers [4, 5] that study transient modes of
motion and stability of stabilizable states of doubly

spinning satellites and axisymmetric gyrostats, as well
as some more general systems consisting of many
coaxial flywheels.

Here we seek to study the free motion of coaxial
bodies, including cases with asymmetry due to slight
displacements of the longitudinal axis of symmetry of
one body from the axis of rotation, and to analyze the
stability of steady-state regimes.

2. EQUATIONS OF MOTION FOR A SYSTEM 
OF COAXIAL BODIES

Suppose the coordinate system 

 

OXYZ

 

 moves trans-
lationally in an inertial space, and its origin coincides
with the center of mass of a system of coaxial bodies.
The coordinate systems 

 

Ox

 

'

 

y

 

'

 

z

 

' and 

 

Oxyz

 

 are fixed to
bodies 

 

1

 

 and 

 

2

 

, respectively, and rotate with respect to
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 Sketch of the RV and the reentry process.
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the system 

 

OXYZ

 

. The axes 

 

Oz

 

 and 

 

Oz

 

'

 

 of the body-
fixed systems coincide with a common axis of rotation
of the bodies (Fig. 2). The position of the coaxial bodies
relative to the system 

 

OXYZ

 

 will be characterized by the
Eulerian angles: the precession angle 

 

ψ

 

, the nutation
angle 

 

θ

 

, and the angles of proper rotation of bodies 

 

1

 

 and

 

2

 

 (

 

ϕ

 

'

 

 and 

 

ϕ

 

, respectively).
The vectors of angular velocities of bodies 

 

1

 

 and 

 

2

 

w

 

' = (

 

p

 

', 

 

q

 

', 

 

r

 

')

 

 and 

 

w

 

 = (

 

p

 

, 

 

q

 

, 

 

r

 

)

 

 are presented as projec-
tions onto the axes of the body-fixed coordinate sys-
tems (

 

Ox

 

'

 

y

 

'

 

z

 

' and 

 

Oxyz

 

) and are expressed via the Eule-
rian angles as follows:

Let us introduce the angle and the velocity of relative
twist:

The vector components of the angular velocity 

 

w

 

' = (

 

p

 

',

 

q

 

', 

 

r

 

')

 

 expressed via the vector components 

 

p

 

, 

 

q

 

, 

 

r

 

 of the
angular velocity of body 

 

2

 

 have the form

 

(1)

 

To derive the equations of motion for the system of
coaxial bodies let us use the center of mass of the sys-
tem as a pole 

 

O

 

 and apply the angular momentum the-
orem [6]:

 

(2)

 

Suppose this system includes dynamically symmet-
ric bodies. Let us denote the principal moments of iner-
tia of bodies 

 

1

 

 and 

 

2

 

 in the body-fixed coordinate sys-
tems 

 

Ox

 

'

 

y

 

'

 

z

 

' and 

 

Oxyz

 

 by 

 

A

 

1

 

, 

 

C

 

1

 

 and 

 

A

 

2

 

, 

 

C

 

2

 

. These
moments of inertia are not central, as the origins of the
body-fixed systems 

 

Ox

 

'

 

y

 

'

 

z

 

' and 

 

Oxyz

 

 coincide with the
center of mass of the two-body system. This can be
written for the above moments of inertia:

where 

 

m

 

i

 

, , 

 

and  are the mass and the natural prin-
cipal moments of inertia for body 

 

i 

 

and 

 

l

 

i

 

 is the distance
between the center of mass of the two-body system and
that of body 

 

i

 

.
The angular momentum of the system with respect

to the center of mass is equal to the vectorial sum of the

p ψ̇ θ ϕsinsin θ̇ ϕ ,cos+=

p ' ψ̇ θ ϕ 'sinsin θ̇ ϕ ',cos+=

q ψ̇ θ ϕ θ̇ ϕ ,sin–cossin=

q ' ψ̇ θ ϕ 'cossin θ̇ ϕ ',sin–=

r ψ̇ θ ϕ̇, r '+cos ψ̇ θ ϕ̇ '.+cos= =

δ ϕ' ϕ , σ– δ̇.= =

p ' p δcos q δ,sin+=

q ' q δcos p δ,sin–=

r ' r σ.+=

dKO

dt
----------- MO

e .=

Ai mili
2 Ai, Ci+ Ci i 1 2,=( ),= =

Ai Ci

angular momenta of bodies 1 and 2 about the point O:
KO = K1 + K2.

Having calculated the derivative of the angular
momentum of the system considered as a sum of the
angular momenta of the bodies and having applied
local derivatives in the body-fixed systems Ox'y'z' and
Oxyz, we can rewrite Eq. (2) in the system Oxyz as

(3)

where w' and w are the angular velocities of rotation of
the body-fixed coordinate systems with respect to the
translationally moving system OXYZ; tilde denotes the
local derivative in the corresponding moving coordi-

nates;  is the tensor of transition from the coordinates
Ox'y'z' to the coordinates Oxyz; and K1 = (A1p', A1q',
C1r') and K2 = (A2p, A2q, C2r).

Let us rewrite Eq. (3) in the matrix form:

(4)

where Mx = M1, x + M2, x; My = M1, y + M2, y; Mz = M1, z +
M2, z are the components of moments of external forces,
which are the sums of corresponding projections of the
moments applied to bodies 1 and 2, respectively.

Taking into consideration expressions (1) for the
components of the angular velocities of the bodies, the

d̂
d̃K1

dt
---------- w ' K1×+

d̃K2

dt
---------- w K2×++ MO

e ,=

d̂

δcos δsin– 0

δsin δcos 0

0 0 1
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r '
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Fig. 2. Coaxial bodies and the applied coordinate systems.
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last matrix relation can be reduced to the following sys-
tem of scalar equations:

(5)

To obtain the equation of relative motion of the bod-
ies let us use the Lagrange equation of the second kind
for the angle of relative twist δ. Let us write down the
expression for the kinetic energy of the system and for
the generalized force:

where Mδ is the moment of the internal interaction of
the bodies along the axis of rotation.

The quantities p, q, and r do not depend explicitly on

the angle δ and velocity (σ = ) of the relative twist;
thus, the equation of relative motion will have the fol-
lowing form:

(6)

Let us complete dynamic equations (5) and (6) with
the kinematic equations for the Eulerian angles:

(7)

3. MOTION OF A FREE SYSTEM 
OF COAXIAL BODIES

Let the moments of external forces applied to the
mechanical system be zero (Mx = My = Mz = 0), and let
a constant moment of relative twist Mδ = M act between
the coaxial bodies.

In this case, the set of equations (5) and (6) will be
written in the form

(8)

According to [6], let us choose a translationally
moving coordinate system in such a way that the axis

A1 A2+( ) ṗ A1 A2 C2–+( )qr– C1q r σ+( )+ Mx,=

A1 A2+( )q̇ C2 A1– A2–( )pr–

– C1 p r σ+( ) My,=

C1 ṙ σ̇+( ) C2ṙ+ Mz.=

T
1
2
---K1 w '

1
2
---K2 w⋅+⋅=

=  
1
2
--- A1 A2+( ) p2 q2+( ) C2r2 C1 r2 2rσ σ2+ +( )+ +[ ] ,

Qδ M1z Mδ,+=

δ̇

C1 ṙ σ̇+( ) M1 z, Mδ.+=

θ̇ p ϕcos q ϕ , ϕ̇sin– r θ p ϕsin q ϕcos+( ),cot–= =

ψ̇ 1
θsin

----------- p ϕsin q ϕcos+( ), δ̇ σ.= =

ṗ A1 A2+( ) 1– A1 A2 C2–+[ ] qr C1q r σ+[ ]–( ),=

q̇ A1 A2+( ) 1–=

× C2 A1– A2–[ ] pr C1 p r σ+[ ]+( ),

ṙ
M–

C2
--------, σ̇

M C1 C2+( )
C1C2

-----------------------------.= =

OZ is coincident with the invariably directed vector of
the angular momentum. In this case, the expressions for
the angular velocities and for the Eulerian angles have
the form

(9)

where K is the angular momentum of the system.

4. STABILITY OF STEADY-STATE ROTATIONS 
OF A FREE SYSTEM

Let us determine possible steady-state modes of the
free system motion by equating to zero the derivatives
of the angular velocities in Eqs. (8):

Two steady-state modes exist:

where p0, q0, r0, and σ0 are constants.

Let us analyze the stability of the first mode. Let us
introduce small perturbations of the angular velocities
∆p, ∆q, ∆r, and ∆σ and write the equations of the per-
turbed motion:

(10)

p
K

A1 A2+
------------------ θ0 ϕ , qsinsin

K
A1 A2+
------------------ θ0 ϕ ,cossin= =

r
Mt–
C2

---------- r0, σ+
M C1 C2+( )

C1C2
-----------------------------t σ0,+= =

θ θ0, ϕ Mt2–
2C2

------------ r0
K

A1 A2+
------------------ θ0cos– 

  t ϕ0,+ += =

ψ K
A1 A2+
------------------t ψ0, δ+

M C1 C2+( )
2C1C2

-----------------------------t2 σ0t δ0,+ += =

A1 A2+( ) 1– A1 A2 C2–+[ ] qr C1q r σ+[ ]–( ) 0,=

A1 A2+( ) 1– C2 A1– A2–[ ] pr C1 p r σ+[ ]+( ) 0,=

ṙ 0, σ̇ 0.= =

1( ) p p0, q q0, r r0,= = =

σ
A1 A2 C1– C2–+

C1
------------------------------------------r0,=

2( ) p 0, q 0, r r0, σ σ0,= = = =

d∆p
dt

---------- A1 A2+( ) 1–=

× A1 A2 C2–+[ ]∆ r C1 ∆r ∆σ+[ ]–( ) q0 ∆q+( ),

d∆q
dt

---------- A1 A2+( ) 1–=

× C2 A1– A2–[ ]∆ r C1 ∆r ∆σ+[ ]+( ) p0 ∆p+( ),

d∆r
dt

--------- 0,
d∆σ
dt

---------- 0.= =
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A general solution to system (10) has the following
form:

(11)

where χ = (A1 + A2)–1([A1 + A2 – C2]∆r – C1[∆r + ∆σ]);
D1 = (∆p)0 + p0, D2 = (∆q)0 + q0, and (∆p)0, (∆q)0, (∆σ)0,
and (∆r)0 are the initial small perturbations.

It can be seen from solutions (11) that the first
steady-state mode is stable in the linear approximation
in the space of angular velocities. It can be demon-
strated that the vectors of the angular momentum of the
system and the angular velocity of the body 2 are codi-
rectional: K = (A1 + A2)w.

The second mode allows a stability study by means
of the Lyapunov function: L = (∆p)2 + (∆q)2 + (∆r)2 +
(∆σ)2. The derivative of this function is identically
equal to zero by virtue of the equations of the corre-
sponding perturbed system; hence, this mode is stable
and characterizes the rotation of the body about the
principal axis of the ellipsoid of inertia coincident with
the common axis of rotation of the bodies.

5. MOTION OF A FREE SYSTEM OF COAXIAL 
BODIES IN THE CASE OF SMALL ASYMMETRY

Let us consider the motion of a system of coaxial
bodies in the case of small asymmetry associated with
a displacement d of the common axis of rotation from
the axis of dynamical symmetry of body 2 (Fig. 3).
Here, the axis of dynamical symmetry of body 1 coin-
cides with the axis of rotation and is parallel to the axis
of dynamical symmetry of body 2. In this case, the sys-
tem’s center of mass O will belong to the interval O1O2

∆p D1 χt D2 χtsin p0,–+cos=

∆q D2 χtcos D1 χtsin– q0,–=

∆σ ∆σ( )0, ∆r ∆r( )0,= =

between the centers of mass of the bodies and will not
change its position with respect to body 2.

Let us bring into consideration the following sys-
tems of coordinates. The system Oxyz is the basic mov-
ing coordinate system with the axes firmly connected
with body 2. The axis Ox lies in the equatorial plane,
which is perpendicular to the axis of rotation, and coin-
cides with the projection of the interval O1O2 onto this
plane. The axis Oy lies in the above-mentioned plane.
The system  is the principal central system of
coordinates connected with body 2 with the axes paral-
lel to those of the system Oxyz. The system  is
the principal central coordinate system connected with
body 1. The system Ox'y'z' is the system of coordinates
with the origin at the center of mass O and with the axes
parallel to those of the system . Let us take the
angle between the equatorial axes Ox and Ox' as the
angle of relative twist. Let m1 and m2 be the masses of
bodies 1 and 2, respectively, and l be the distance
between the bodies' centers of mass O1 and O2.

The projections of the angular velocity of body 2 in
the systems Oxyz and  are the same and equal to
p, q, and r. Similarly, the projections of the angular
velocity of body 1 in the systems Ox'y'z' and 
are identical and equal to p', q', and r' because the corre-
sponding axes are parallel. The distances between the
centers of mass of bodies 1 and 2, and the center of
mass of the system are correspondingly equal (Fig. 3)
to l1 = lm2/(m1 + m2) and l2 = lm1/(m1 + m2) in the direc-
tion along the axis of rotation and d1 = dm2/(m1 + m2)
and d2 = dm1/(m1 + m2) in the direction perpendicular
to it.

A small displacement d (Fig. 3) results in variations
of the moments of inertia of body 2 in the system Oxyz:

O2xyz

O1x 'y 'z '

O1x 'y 'z '

O2xyz

O1x 'y 'z '

Ixx A2 m2l2
2, Iyy+ A2 m2l2

2 m2d2
2,+ += =

z

z–'y–' x–'

y–'
x–'

y

x

y y–

x–
z–

y–

x–

O1

O

l1

O2

d
d1

l2

δ

1

2

d2

x'
x

x'

O2OO1

d2d1
δ

y'

1 2

y'

(a) (b)

Fig. 3. Coaxial bodies in the case of small asymmetry.
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where ,  are the equatorial and longitudinal
moments of inertia of body 2 as calculated in the central
system .

Let us write down the angular momentum theorem
in the coordinate system Oxyz in form (3). To do this,
let us find the projections of the angular momenta of
bodies 1 and 2 onto the axes of the systems Ox'y'z' and
Oxyz, respectively. The angular momentum of body 1 is
calculated as the sum of the angular momenta of motion

of the center of mass of body 1, , and the angular
momentum of body 1 in the case of its rotation about

the center of mass, : K1 =  + .

In projections onto the axes of the coordinate system
Ox'y'z' we obtain

(12)

where  and  are the principal equatorial and longi-
tudinal central moments of inertia of body 1 and [δ] =

 is the matrix of transition from the

coordinate system Ox'y'z' to the system Oxyz.
Let us write down the angular momentum of body 2

in the system Oxyz:

(13)

Taking (12) and (13) into account, vector equation (3)
can be written in the coordinate system Oxyz in the
form

Izz C2 m2d2
2,+=

Ixy Iyz 0, Ixz m2 l2–( )d2– m2l2d2,= = = =

A2 C2

O2xyz

K1
e

K1
r K1

e K1
r

K1 m1 δ[ ] 1–
d1–

0

l1

p

q

r

×
d1–

0

l1

×

 
 
 
 
  A1 p '

A1q '

C1r '

+=

=  m1 δ[ ] 1–

l1
2 p d1l1r+

q l1
2 d1

2+( )

d1
2r d1l1 p+

A1 p '

A1q '

C1r '

,+

A1 C1

δcos δsin– 0

δsin δcos 0

0 0 1

K2 Î w⋅
A2 m2l2

2+( )p m2l2d2r+

A2 m2l2
2 m2d2

2+ +( )q

C2 m2d2
2+( )r m2l2d2 p+

.= =

A2 m2l2
2+( ) ṗ m2l2d2ṙ+

A2 m2l2
2 m2d2

2+ +( )q̇

C2 m2d2
2+( )ṙ m2l2d2 ṗ+

p

q

r

+

(14)

Applying relations (1), Eqs. (14) can be rewritten in
the following form:

(15)

where Ai =  + mi , Ci =  (i = 1, 2).

In this case, the equation of relative motion of the
bodies turns out to be similar to Eq. (6). System (15),
together with Eq. (6), presents dynamical equations of
motion of coaxial bodies in the case of the above-indi-
cated asymmetry.

Let us take a dimensionless variable characterizing
the displacement of the axes of dynamic symmetry of the
bodies from the axis of rotation as a small parameter ε:

(16)

Suppose that no moments of external forces and
internal interaction are acting; then, to an accuracy of
the order of ε, the dynamic equations can be written as

(17)

×
A2 m2l2

2+( )p m2l2d2r+

A2 m2l2
2 m2d2

2+ +( )q

C2 m2d2
2+( )r m2l2d2 p+

+ δ[ ] d
dt
----- m1 δ[ ] 1–

l1
2 p d1l1r+

q l1
2 d1

2+( )

d1
2r d1l1 p+

A1 p '

A1q '

C1r '

+

 
 
 
 
 
 

p '

q '

r '

+









× m1 δ[ ] 1–

l1
2 p d1l1r+

q l1
2 d1

2+( )

d1
2r d1l1 p+

A1 p '

A1q '

C1r '

+

 
 
 
 
 
 









Mx

My

Mz

.=

A1 A2+( ) ṗ qr C1 A1– C2 A2–+( ) C1qσ+ +

=  Mx m1l1d1 m2l2d2+( ) pq ṙ+( ),–

A1 A2 m1d1
2 m2d2

2+ + +( )q̇ +

+ pr A1 C1– A2 C2– m1d1
2– m2d2

2–+( ) C1 pσ–

=  My m1l1d1 m2l2d2+( ) r2 p2–( ),–

C1 C2 m1d1
2 m2d2

2+ + +( )ṙ C1σ̇+

=  Mz m1l1d1 m2l2d2+( ) ṗ qr–( )– m1d1
2 m2d2

2+( )pq,–

Ai li
2 Ci

ε
m1d1l1 m2d2l2+

A1 A2+
--------------------------------------

m1m2dl
m1 m2+( ) A1 A2+( )

-----------------------------------------------.= =

ṗ aqr bqσ+ + ε pq ṙ+( ),–=

q̇ apr– bpσ– ε r2 p2–( ),–=

C1 C2+( )ṙ C1σ̇+ ε A1 A2+( ) ṗ qr–( ),–=



COSMIC RESEARCH      Vol. 40      No. 2      2002

STABILIZATION OF A REENTRY VEHICLE BY A PARTIAL SPIN-UP 183

where a =  and b =  are the

dimensionless parameters.
Let us change from the equatorial angular velocities

to the variables of the “amplitude–phase” type, G and
F, with the aid of the following substitution:

(18)

To an accuracy of the order of ε, dynamic equa-
tions (17) can be rewritten as follows:

(19)

The solutions to the generating system of equations
(ε = 0) have the form

(20)

where ω = r0 – cosθ0 = r0 –  = r0 –

 = –ar0 – bσ0.

Applying Poincaré’s theorem [7], we seek the solu-
tions to perturbed system (19) in the form of the follow-
ing expansions, confining ourselves to two terms of the
asymptotic series:

(21)

where  = σ0t + δ0 and g(t), f(t), R(t), Σ(t), and ∆(t) are
the functions to be found.

Substituting expressions (21) into perturbed sys-
tem (19) and equating the terms of the order of ε, we
obtain the system of equations for perturbations:

(22)

σ̇ ṙ,–=

C1 A1– C2 A2–+
A1 A2+

------------------------------------------
C1

A1 A2+
------------------

p G t( ) F t( ), qcos G t( ) F t( ).sin= =

Ġ εr2 F,cos–=

Ḟ ar bσ+( )–
ε G2 r2–[ ] Fsin

G
------------------------------------,–=

ṙ
ε A1 A2+( )

C2
--------------------------G r ar bσ+( )+[ ] F,cos=

σ̇ ṙ.–=

G
K θ0sin
A1 A2+
------------------, F ωt ϕ0,+= =

r r0, σ σ0,= =

K
A1 A2+
------------------

Kz

A1 A2+
------------------

C1σ0 C1 C2+( )r0+
A1 A2+

----------------------------------------------

G t( ) G εg t( ), F t( )+ F εf t( ),+= =

σ t( ) σ εΣ t( ), r t( )+ r εR t( ),+= =

δ t( ) δ ε∆ t( ), ∆̇+ Σ,= =

δ

ġ r0
2 ωt ϕ0+( ),cos–=

f˙ aR bΣ+( )–
G

2
r0

2–

G
---------------- ωt ϕ0+( ),sin–=

Ṙ
A1 A2+

C2
------------------G r0 ω–[ ] ωt ϕ0+( ),cos=

Following [7], we obtain the solution to system (22)
for zero initial values of small perturbations:

(23)

where

where

The time dependences for the amplitude–phase vari-
ables and for the angular velocities r and σ of the sys-
tem of coaxial bodies with a small asymmetry follow
from Eqs. (23) and (21).

To an accuracy of the order of ε, we can write the
dependences for the equatorial angular velocities:

(24)

where

Let us pass on to determining the dependences for
the Eulerian angles and seek them in the form of the fol-
lowing expansions in the small parameter ε:

(25)

The generating solutions ( , , ) are defined by
dependences (9) with allowance made for zero moment
of the internal interaction of the bodies (M = 0). Substi-
tuting expansion (25) and the obtained dependences for
the angular velocities into Euler’s equations (7) and

Σ̇
A1 A2+

C2
------------------G r0 ω–[ ] ωt ϕ0+( )cos .–=

g t( )
r0

2

ω
---- ωt ϕ0+( )sin ϕ0sin–[ ] ,–=

f t( ) γt β ωt ϕ0+( ) ϕ0cos–cos[ ] ,+=

R t( ) α ωt ϕ0+( )sin ϕ0sin–( ),=

Σ t( ) α ωt ϕ0+( )sin ϕ0sin–( ),–=

α
A1 A2+

C2ω
------------------G r0 ω–[ ] ,=

β 1
ω
----

A1 A2+
C2ω

------------------G r0 ω–[ ] b a–( )
G

2
r0

2–

G
----------------–

 
 
 

,–=

γ α ϕ0 a b–( ).sin=

p t( ) G F εP t( ),  q t ( )+cos  G F sin ε Q t ( ) ,+= =

P t( ) g Fcos=

– G β ωt ϕ0+( )cos ϕ0cos–[ ] γt+( ) F,sin

Q t( ) g Fsin=

+ G β ωt ϕ0+( )cos ϕ0cos–[ ] γt+( ) F.cos

ψ ψ εΨ t( ), θ+ θ εΘ t( ),+= =

ϕ ϕ εΦ t( ).+=

ψ θ ϕ
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equating the terms of the order of ε, we obtain the kine-
matical equations of the first approximation:

(26)

Now, we integrate separately the two last equations
of the inhomogeneous linear system of equations (26).
Let us apply the Cauchy formula [8]:

(27)

where y(t) is the general solution to the inhomogeneous
linear system of differential equations L(y) = f(t), L is
the linear differential operator, t0 is the initial value of
the independent variable, y0 is the vector of initial val-
ues of the required functions, M(t) is the fundamental
matrix of the corresponding homogeneous system, and
f(t) is the vector of perturbing functions.

Finally, let us write the solutions for small perturba-
tions of the nutation angles and the angles of proper

Ψ̇ K θcos
A1 A2+( ) θsin

----------------------------------Θ–
1

θsin
----------- P ϕsin Q ϕcos+[ ] ,+=

Θ̇ K θsin
A1 A2+
------------------Φ– P ϕ Q ϕ ,sin–cos+=

Φ̇ K

A1 A2+( ) θsin
----------------------------------Θ θ P ϕsin Q ϕcos+[ ] .cot–=

y t( ) M t( )M 1– t0( )y0 M t( ) M 1– s( )f s( ) s,d

t0

t

∫+=

rotation at zero initial values:

(28)

where 

and

are the known perturbing functions and

is the fundamental matrix of solutions to the corre-
sponding homogeneous system.

If we substitute the time dependence of the nutation
angle perturbation from (28) into the first equation in
(26), the perturbation of the precession angle Ψ(t) will
be determined by integration:

Let us give the nutation angle θ(t) (Fig. 4) calculated
by the approximate analytical dependences (28) and
(25) and by numerical integration with the following
initial conditions of motion and inertia–mass parame-
ters of the system:

m1 = 15 kg, m2 = 30 kg, 

l = 0.4 m, d = 0.01 m,

A1 = 2 kg m2, A2 = 1.5 kg m2, 

C1 = 1.2 kg m2, C2 = 1.3 kg m2,

p0 = 0.3 rad/s, q0 = 0.2 rad/s, 

r0 = 1.1 rad/s, σ0 = 5 rad/s.

The small parameter is ε = 0.01 for the above
numerical values.

The obtained results permit an analysis of the
motion of reentry vehicles with partial spin-up to be
made. They also allow one to choose the initial condi-
tions of motion and inertia–mass parameters for this
type of spacecraft.

Θ t( )
Φ t( )

M t( ) M 1– s( ) f Θ s( )

f Φ s( )
s,d

0

t

∫=

f Θ P ϕcos Q ϕ ,sin–=

f Φ θ P ϕsin Q ϕcos+[ ]cot–=

M t( )
θ K

A1 A2+
------------------ tsinsin– θ K

A1 A2+
------------------ tcossin

K
A1 A2+
------------------ tcos K

A1 A2+
------------------ tsin

=

Ψ t( ) 1
θ0sin

-------------=

×
K θ0cos
A1 A2+( )

-----------------------Θ t( )– P t( ) ϕsin Q t( ) ϕcos+ + 
  t.d

0

t

∫
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Fig. 4. Comparison of nutation angles calculated by
(1) numerical integration and (2) the approximate analyti-
cal relation.
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